Object-Oriented Software Engineering

Using UML, Patterns, and Java

Object Design: Closing the Gap
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Object Design

< Object design is the process of adding details to the
requirements analysis and making implementation decisions

< The object designer must choose among different ways to
implement the analysis model with the goal to minimize
execution time, memory and other measures of cost.

+ Requirements Analysis: The functional model and the dynamic
model deliver operationsfor the object model

+ Object Design: Wedecideon whereto put these operationsin the
object model

< Object design serves as the basis of implementation
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Developers play different Roles during Object Design
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Specifying I nterfaces

« Requirements analysis activities
+ |dentifying attributes and oper ations without
specifying their typesor their parameters.
< Object design: Three activities
1. Add visibility information
2. Add type signatureinformation
3. Add contracts
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1. Add Visihility Information

UML defines three levels of visibility:
< Private (Class implementor):
+ A private attribute can be accessed only by the classin which it is
defined.
+ A private operation can be invoked only by the classin which it is
defined.
+ Privateattributes and operations cannot be accessed by subclasses
or other classes.
+ Protected (Class extender):
+ A protected attribute or operation can be accessed by the classin
which it isdefined and on any descendent of the class.
< Public (Class user):
+ A public attribute or operation can be accessed by any class.
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Implementation of UML Visibility in Java

Tournament

( -)maxNumPlayers: int

MaxNumPlayers():int
+ get™Nayers(): List

polean

int getMaxNumPlayersQ) {.};

st getPlayersQ) {.}:

public void acceptPlayer(Player p) {.};
Teoid removePlayer(Player p) {.}:

ublic Joolean isPlayerAccepted(Player p) {.};
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Information Hiding Heuristics

« Carefully define the public interface for classes as well as
subsystems (facade)
< Always apply the “Need to know” principle.

+ Only if somebody needs to access the infor mation, make it publicly
possible, but then only through well defined channels, so you always
know the access.

« The fewer an operation knows
+ thelesslikely it will be affected by any changes
+ theeasier the class can be changed

< Trade-off: Information hiding vs efficiency

+ Accessing a private attribute might be too slow (for examplein real-
time systems or games)
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Information Hiding Design Principles

< Only the operations of aclass are allowed to manipulate its
attributes
+ Access attributes only via operations.
< Hide external objects at subsystem boundary

+ Define abstract classinterfaces which mediate between system and
external world aswell as between subsystems

< Do not apply an operation to the result of another operation.
+ Writeanew operation that combines the two operations.
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2. Add Type Signature Information

Hashtable
—numElements:int
+put()
+get()
+remove()
+containsKey()
+sizeQ)

)

Hashtable

Attributes and operations —numElements:int

without type information
are acceptable during analysis

+get(key:Object):Objec
+remove(key:Object)
+containsKey(key:Object):boolean

t+size(QQ:int

+put(key:Object,entry:Object)
t
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Team Activity: Visibility and Signatures
+ Description: Select one of your classes. Complete the
visibility and signature for that class.

+ Process:
+  Work inteams
+ You have about 10 minutes.
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3. Add Contracts

< Contracts on aclass enable caller and callee to share the same assumptions
about the class.

+ Contracts include three types of constraints:

< Invariant:

+ A predicatethat isalwaystruefor all instances of a class. Invariantsare

constraints associated with classes or interfaces.
% Precondition:

+ Preconditions are predicates associated with a specific operation and must
betrue beforethe operation isinvoked. Preconditions are used to specify
constraintsthat a caller must meet before calling an operation.

+ Postcondition:

+ Postconditions are predicates associated with a specific operation and must
betrueafter an operation isinvoked. Postconditions are used to specify
constraintsthat the object must ensure after the invocation of the
operation.
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Expressing Constraintsin UML Models

< A constraint can also be depicted as a note attached to the
constrained UML element by a dependency relationship.

HashTable

_conansorien ) —]
!containsK ey(key) ~~._|numElements:int
— N put(key,entry:Object) ~
remove(key:Object

containsKey (ke :Ogiéc-t booJean
ontainsK ey(key

<<precondition>> & _-*~
containsKey(ke
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Contract for removePlayer in Tournament

context Tournament::removePlayer(p) pre:
isPlayerAccepted(p)

context Tournament::removePlayer(p) post:
not isPlayerAccepted(p)

context Tournament::removePlayer(p) post:
getNumPlayers() = @pre.getNumPlayers() - 1
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Expressing constraintsin UML Models

< OCL (Object Constraint Language)
+ OCL allows constraintsto be formally specified on single model
elementsor groups of model elements
+ A constraint isexpressed asan OCL expression returning the value
trueor false. OCL isnot a procedural language (cannot constrain
control flow).
+ OCL expressions for Hashtable operation put():
+ Invariant:
+ context Hashtableinv: numElements>=0

OCL expressian

Context is a class
operation put
+ Precondition: = o
== o
+ context Hashtable::put(key, entry) pre:!containsKey(key)
+ Post-condition:

« context Hashtable::put(key, entry) post: containsKey(key) and
get(key) = entry
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Contract for acceptPlayer in Tournament

context Tournament::acceptPlayer(p) pre:
not isPlayerAccepted(p)

context Tournament::acceptPlayer(p) pre:
getNumPlayers() < getMaxNumPlayers()

context Tournament::acceptPlayer(p) post:
isPlayerAccepted(p)

context Tournament::acceptPlayer(p) post:
getNumPlayers() = @pre.getNumPlayers() + 1
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Annotation of Tournament class

public class Tournament {
/** The maximum number of players
* is positive at all times.
* @invariant maxNumPlayers > 0

*/

/** The acceptPlayer() operation

assumes that the specified

player has not been accepted

in the Tournament yet.

@pre lisPlayerAccepted(p)

@pre getNumPlayers()<maxNumPlayers

@post isPlayerAccepted(p)

@post getNumPlayers() =
@pre.getNumPlayers() + 1

*

private int maxNumPlayers;

H R bR % d %

/** The players List contains N
* references to Players who are /
* are registered with the public void acceptPlayer (Player p)
* Tournament. */ {3}
private List players;

/** The removePlayer() operation

/** Returns the current number of * assumes that the specified player

* pl in the t t. */ * is currently in the Tournament.
players in the tournamen * gpre isplayerAccepted(p)
public int getNumPlayersQ) {.} * @post 1 ayerAccepted(p)
* @post getNumPlayers() =

/** Returns _the maximum number of Opre.gethunPlayers() - 1

* players in the tournament. */

public int getMaxNumPlayers() {.} public void removePlayer(Player p) {.}
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Team Activity: Contracts
+ Description: Select one of your classes. Complete the
contracts for that class.
+ Process.
+  Work inteams
+ You have about 10 minutes.
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3 Types of Navigation through a Class Diagram

1. Local attribute 2. Directly related class 3. Indirectly related class
Tournament League | | League |
( start:Date *|
end:Date
| *
Player | | Tournament |

*

*
Player

Any OCL constraint for any class diagram can be built
using only a combination of these three navigation types!
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Model Refinement with 3 additional Constraints

+ A Tournament’s planned duration must be under one week.
+ Players can be accepted in a Tournament only if they are
already registered with the corresponding League.

+ The number of active Playersin a League are those that have
taken part in at least one Tournament of the League.

+ To better understand these constraints we instantiate the class
diagram for a specific group of instances
* 2 Leagues, 2 Tournamentsand 5 Players
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Constraints can involve more than one class

How do we specify constraints on
more than one class?
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ARENA Example: League, Tournament and Player

League

+start:Date
+end:Date

+getActivePlayers()

{ordered}
>1 tournaments
Tournament

+start:Date
+end:Date

+acceptPlayer(p:Player’

*

‘tournaments

*

players players

Player

*
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Using UMIL, Paterns and. 2

Instance Diagram: 2 Leagues, 2 Tournaments, and 5
Players

tttExpert:League chessNovice:League

winter:Tournament

start=Dec_21
end=Dec 22

xmas: Tournament

start=Dec 23
end=Dec 25

alice:Player

bob:Player

marc:Player

joe:Player

zoe:Player

El
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Specifying the Model Constraints

L ocal attribute navigation — League
contextFFeuament inv: +start:Daye
+end: Datx
end - start <y Calendar. WEEK SortrctiverlayersO
Directly related class navigation
{ordered
context

> tournament:

Tournament

+start:Date
+end:Date

+acceptPlayer(p:Player
*| tournaments

*| players

Player

6\

jname:String
+email:String
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OCL supports Quantification

+ OCL forall quantifier

/* All Matchesin a Tournament occur within the Tournament’ s time frame */

context Tournament inv:
matches->forAll(m:Match |
m.start.after(t.start) and m.end.before(t.end))

+ OCL exists quantifier

/* Each Tournament conducts at least one Match on the first day of the
Tournament */

context Tournament inv:
matches->exists(m:Match | m.start.equal s(start))
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Specifying the Model Constraints

League I

Local attribute navigation
context Tournament inv:
end - start <= Calendar. WEEK

+start:Date
+end:Date

+getActivePlal

ers()

{orde
>Atournament:

Directly related class navigation
context Tournament::acceptPlayer(p) pre:

league.players->irfcludes(p)

Tournam

+start:Date
+end:Date

+acceptPlayer{p:Playér
* aments

playe!
Pla

player:

+name:String

+email:String
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Summary

+ There are three different rolesfor developers during object

design
+ Classuser, classimplementor and class extender

+ During object design - and only during object design - we
specify visibility rules

+ Constraints are boolean expressions on model elements

« Contracts are constraints on a class enable class users,
implementors and extenders to share the same assumption
about the class (“Design by contract”)

+ OCL isalanguage that allows us to express constraints on
UML models

+ Complicated constratins involving more than one class,
attribute or operation can be expressed with 3 basic navigation

types.
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