Object-Oriented Software Engineering

Using UML, Patterns, and Java

Object Design: Closing the Gap

System \

'Application objects \

—

Solution objects \

\

Custom objects \ \

e

Off-the-shelf components \

\

Bernd Brueoge Allen Dutoit

Machine

Class user versus Class Extender

Developers responsible fo

Bernd Bruegge Allen H. Dutoit

Developers responsible for
the implementation of Leagu
class users of Game

are

class implementors

o Fattens and Java B

Object Design

< Object design is the process of adding details to the
requirements analysis and making implementation decisions

< The object designer must choose among different ways to
implement the analysis model with the goal to minimize
execution time, memory and other measures of cost.

+ Requirements Analysis: The functional model and the dynamic
model deliver operationsfor the object model

+ Object Design: Wedecideon whereto put these operationsin the
object model

< Object design serves as the basis of implementation

Bernd Bruegge & Alle Dutoit 2

Developers play different Roles during Object Design

Call Class

% / Class User
Realize Class

Developer V\CIass Implementor

Class Extender Refine Class

Bernd Bruege . Allen Dutot

Specifying I nterfaces

« Requirements analysis activities
+ |dentifying attributes and oper ations without
specifying their typesor their parameters.
< Object design: Three activities
1. Add visibility information
2. Add type signatureinformation
3. Add contracts

Bernd Bruegge & Allen Dutoit Object 6

Page 1

1. Add Visihility Information

UML defines three levels of visibility:
< Private (Class implementor):
+ A private attribute can be accessed only by the classin which it is
defined.
+ A private operation can be invoked only by the classin which it is
defined.
+ Privateattributes and operations cannot be accessed by subclasses
or other classes.
+ Protected (Class extender):
+ A protected attribute or operation can be accessed by the classin
which it isdefined and on any descendent of the class.
< Public (Class user):
+ A public attribute or operation can be accessed by any class.

Bernd Bruenge & Alln Dutoit

Implementation of UML Visibility in Java

Tournament

(-)maxNumPlayers: int

MaxNumPlayers():int
+ get™Nayers(): List

polean

int getMaxNumPlayersQ) {.};

st getPlayersQ) {.}:

public void acceptPlayer(Player p) {.};
Teoid removePlayer(Player p) {.}:

ublic Joolean isPlayerAccepted(Player p) {.};

Bernd Bruegge & Alle Dutoit

Information Hiding Heuristics

« Carefully define the public interface for classes as well as
subsystems (facade)
< Always apply the “Need to know” principle.

+ Only if somebody needs to access the infor mation, make it publicly
possible, but then only through well defined channels, so you always
know the access.

« The fewer an operation knows
+ thelesslikely it will be affected by any changes
+ theeasier the class can be changed

< Trade-off: Information hiding vs efficiency

+ Accessing a private attribute might be too slow (for examplein real-
time systems or games)

Bernd Bruege . Alle Dutoil

Information Hiding Design Principles

< Only the operations of aclass are allowed to manipulate its
attributes
+ Access attributes only via operations.
< Hide external objects at subsystem boundary

+ Define abstract classinterfaces which mediate between system and
external world aswell as between subsystems

< Do not apply an operation to the result of another operation.
+ Writeanew operation that combines the two operations.

Bernd Bruegge Alle Dutait

2. Add Type Signature Information

Hashtable
—numElements:int
+put()
+get()
+remove()
+containsKey()
+sizeQ)

)

Hashtable

Attributes and operations —numElements:int

without type information
are acceptable during analysis

+get(key:Object):Objec
+remove(key:Object)
+containsKey(key:Object):boolean

t+size(QQ:int

+put(key:Object,entry:Object)
t

Bernd Bruegge & Allen Dutoit Object

Team Activity: Visibility and Signatures
+ Description: Select one of your classes. Complete the
visibility and signature for that class.

+ Process:
+ Work inteams
+ You have about 10 minutes.

Bnd Bruegge & Alle H. Dutoit Object Oriented Sftvr e Enginesring: Using UM, Pattens. and Java

Page 2

3. Add Contracts

< Contracts on aclass enable caller and callee to share the same assumptions
about the class.

+ Contracts include three types of constraints:

< Invariant:

+ A predicatethat isalwaystruefor all instances of a class. Invariantsare

constraints associated with classes or interfaces.
% Precondition:

+ Preconditions are predicates associated with a specific operation and must
betrue beforethe operation isinvoked. Preconditions are used to specify
constraintsthat a caller must meet before calling an operation.

+ Postcondition:

+ Postconditions are predicates associated with a specific operation and must
betrueafter an operation isinvoked. Postconditions are used to specify
constraintsthat the object must ensure after the invocation of the
operation.

Bernd Bruegge & Alle Dutoit 3

Expressing Constraintsin UML Models

< A constraint can also be depicted as a note attached to the
constrained UML element by a dependency relationship.

HashTable

_conansorien) —]
!containsK ey(key) ~~._|numElements:int
— N put(key,entry:Object) ~
remove(key:Object

containsKey (ke :Ogiéc-t booJean
ontainsK ey(key

<<precondition>> & _-*~
containsKey(ke

Bernd Bruege . Allen Dutot 15

Contract for removePlayer in Tournament

context Tournament::removePlayer(p) pre:
isPlayerAccepted(p)

context Tournament::removePlayer(p) post:
not isPlayerAccepted(p)

context Tournament::removePlayer(p) post:
getNumPlayers() = @pre.getNumPlayers() - 1

Bernd Bruenge . Allen H. Dutot Object-Orientad Sftware Enginesring: Using UML. Pattans, and Java w

Expressing constraintsin UML Models

< OCL (Object Constraint Language)
+ OCL allows constraintsto be formally specified on single model
elementsor groups of model elements
+ A constraint isexpressed asan OCL expression returning the value
trueor false. OCL isnot a procedural language (cannot constrain
control flow).
+ OCL expressions for Hashtable operation put():
+ Invariant:
+ context Hashtableinv: numElements>=0

OCL expressian

Context is a class
operation put
+ Precondition: = o
== o
+ context Hashtable::put(key, entry) pre:!containsKey(key)
+ Post-condition:

« context Hashtable::put(key, entry) post: containsKey(key) and
get(key) = entry

Bernd Bruegge & Allen Dutait 1

Contract for acceptPlayer in Tournament

context Tournament::acceptPlayer(p) pre:
not isPlayerAccepted(p)

context Tournament::acceptPlayer(p) pre:
getNumPlayers() < getMaxNumPlayers()

context Tournament::acceptPlayer(p) post:
isPlayerAccepted(p)

context Tournament::acceptPlayer(p) post:
getNumPlayers() = @pre.getNumPlayers() + 1

Bnd Bruegge . Allen H. Dutol Using UMIL, P @ 5

Page 3

Annotation of Tournament class

public class Tournament {
/** The maximum number of players
* is positive at all times.
* @invariant maxNumPlayers > 0

*/

/** The acceptPlayer() operation

assumes that the specified

player has not been accepted

in the Tournament yet.

@pre lisPlayerAccepted(p)

@pre getNumPlayers()<maxNumPlayers

@post isPlayerAccepted(p)

@post getNumPlayers() =
@pre.getNumPlayers() + 1

*

private int maxNumPlayers;

H R bR % d %

/** The players List contains N
* references to Players who are /
* are registered with the public void acceptPlayer (Player p)
* Tournament. */ {3}
private List players;

/** The removePlayer() operation

/** Returns the current number of * assumes that the specified player

* pl in the t t. */ * is currently in the Tournament.
players in the tournamen * gpre isplayerAccepted(p)
public int getNumPlayersQ) {.} * @post 1 ayerAccepted(p)
* @post getNumPlayers() =

/** Returns _the maximum number of Opre.gethunPlayers() - 1

* players in the tournament. */

public int getMaxNumPlayers() {.} public void removePlayer(Player p) {.}

Bnd Bruegge & Alle H. Dutoit Object Oriented Sftvr e Enginesring: Using UM, Pattens. and Java »

Team Activity: Contracts
+ Description: Select one of your classes. Complete the
contracts for that class.
+ Process.
+ Work inteams
+ You have about 10 minutes.

Bernd Bruegge . Allen H. Dutoit

UsngUML. P @ 19

3 Types of Navigation through a Class Diagram

1. Local attribute 2. Directly related class 3. Indirectly related class
Tournament League | | League |
(start:Date *|
end:Date
| *
Player | | Tournament |

*

*
Player

Any OCL constraint for any class diagram can be built
using only a combination of these three navigation types!

Bernd Bruages. Allen H. Dutot

UsngumL P 3 2

Model Refinement with 3 additional Constraints

+ A Tournament’s planned duration must be under one week.
+ Players can be accepted in a Tournament only if they are
already registered with the corresponding League.

+ The number of active Playersin a League are those that have
taken part in at least one Tournament of the League.

+ To better understand these constraints we instantiate the class
diagram for a specific group of instances
* 2 Leagues, 2 Tournamentsand 5 Players

Bernd Bruenge . Allen H. Dutot Object-Orientad Sftware Enginesring: Using UML. Pattans, and Java

Page 4

Constraints can involve more than one class

How do we specify constraints on
more than one class?

Bernd Bruegge & Allen H. Dutoi

Using UMIL, P o 2

ARENA Example: League, Tournament and Player

League

+start:Date
+end:Date

+getActivePlayers()

{ordered}
>1 tournaments
Tournament

+start:Date
+end:Date

+acceptPlayer(p:Player’

*

‘tournaments

*

players players

Player

*

Bnd Bruegge . Allen H. Dutol

Using UMIL, Paterns and. 2

Instance Diagram: 2 Leagues, 2 Tournaments, and 5
Players

tttExpert:League chessNovice:League

winter:Tournament

start=Dec_21
end=Dec 22

xmas: Tournament

start=Dec 23
end=Dec 25

alice:Player

bob:Player

marc:Player

joe:Player

zoe:Player

El

Bnd Bruegge & Alle H. Dutoit Object Oriented Sftvr e Enginesring: Using UM, Pattens. and Java

Specifying the Model Constraints

L ocal attribute navigation — League
contextFFeuament inv: +start:Daye
+end: Datx
end - start <y Calendar. WEEK SortrctiverlayersO
Directly related class navigation
{ordered
context

> tournament:

Tournament

+start:Date
+end:Date

+acceptPlayer(p:Player
*| tournaments

*| players

Player

6\

jname:String
+email:String

Bernd Bruegge . Allen H. Dutoit UsngUML. P @ >

OCL supports Quantification

+ OCL forall quantifier

/* All Matchesin a Tournament occur within the Tournament’ s time frame */

context Tournament inv:
matches->forAll(m:Match |
m.start.after(t.start) and m.end.before(t.end))

+ OCL exists quantifier

/* Each Tournament conducts at least one Match on the first day of the
Tournament */

context Tournament inv:
matches->exists(m:Match | m.start.equal s(start))

Bernd Bruages. Allen H. Dutot UsngumL P 3 2

Specifying the Model Constraints

League I

Local attribute navigation
context Tournament inv:
end - start <= Calendar. WEEK

+start:Date
+end:Date

+getActivePlal

ers()

{orde
>Atournament:

Directly related class navigation
context Tournament::acceptPlayer(p) pre:

league.players->irfcludes(p)

Tournam

+start:Date
+end:Date

+acceptPlayer{p:Playér
* aments

playe!
Pla

player:

+name:String

+email:String

Bernd Bruegge & Allen H. Dutoi Object-Orient Sftvre Enginesring: Using UM, Patterns. and Java Bl

Summary

+ There are three different rolesfor developers during object

design
+ Classuser, classimplementor and class extender

+ During object design - and only during object design - we
specify visibility rules

+ Constraints are boolean expressions on model elements

« Contracts are constraints on a class enable class users,
implementors and extenders to share the same assumption
about the class (“Design by contract”)

+ OCL isalanguage that allows us to express constraints on
UML models

+ Complicated constratins involving more than one class,
attribute or operation can be expressed with 3 basic navigation

types.

Using UMIL, Paterns and =

Bnd Bruegge . Allen H. Dutol

Page 5

