W
e
ol T e

8 .

i
. |

Chapter 8, Object Désign
Reuse and Patterns [

¥ oot . '
BAR[pue ‘suraned ‘TN 3UIsn
SULIAUISUT 3JBM)JOS PIAUALIO-3NIqO

Object Design

¢ Object design 1s the process of adding details to the
requirements analysis and making implementation decisions

+ The object designer must choose among different ways to
implement the analysis model with the goal to minimize
execution time, memory and other measures of cost.

+ Requirements Analysis: Use cases, functional and dynamic
model deliver operations for object model

¢ Object Design: Iterates on the models, in particular the object
model and refine the models

¢ Object Design serves as the basis of implementation

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Object Design: Closing the Gap

‘ System 5

‘Appl I cation object SS

_— N

\

‘ Sol ution objects 5

\

‘ Cust om obj ect s > \

\

/

>

‘O‘f-t he-shel f conponents >

~

=

Bernd Bruegge & Allen Dutoit

Machine

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Examples of Object Design Activities

«+ Identification of existing components
+ Full definition of associations
o Full definition of classes
¢ System Design => Service
¢ Object Design => API
¢ Specifying the contract for each component
¢ Choosing algorithms and data structures
¢ Identifying possibilities of reuse
¢ Detection of solution-domain classes
+ Optimization
+ Increase of inheritance
+ Decision on control

o Packaging

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

A More Detailed View of Object Design Activities

(:: Select Subsystem ::)

/ Specification \ / Reuse \

Identifying missing
attributes & operations

9Gdentifyi ng components

Specifying visibility

Adjusting components

Specifying types &
signatures

Identifying patterns

———<:: Adjusting patterns

Specifying constraints

A lalAals

1
\[)kj U\J\ﬁ
Y

Specifying exceptions

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Detailed View of Object Design Activities (ctd)

H Check Use Cases ><

/ Restructuring \ / Optimization \

Revisiting
inheritance

Optimizing access
paths

Caching complex
computations

Realizing associations

I

Dééc
Collapsing classes :) (:
) (Delaying complex

computations

-0~

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

A Little Bit of Terminology: Activities

¢ Object-Oriented methodologies use these terms:
¢ System Design Activity

¢ Decomposition into subsystems
¢ Object Design Activity
¢ Implementation language chosen

¢ Data structures and algorithms chosen

+ Structured analysis/structured design uses these terms:

¢ Preliminary Design Activity
¢ Decomposition into subsystems
¢ Data structures are chosen

¢ Detailed Design Activity
¢ Algorithms are chosen
¢ Data structures are refined
¢ Implementation language is chosen

¢ Typically in parallel with preliminary design, not a separate activity

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Outline of the Lecture

¢ Design Patterns
¢ Usefulness of design patterns
¢ Design Pattern Categories
+ Patterns covered in this lecture
¢ Composite: Model dynamic aggregates
¢ Facade: Interfacing to subsystems
+ Adapter: Interfacing to existing systems (legacy systems)
¢ Bridge: Interfacing to existing and future systems
¢+ More patterns:
¢ Abstract Factory: Provide manufacturer independence
¢ Builder: Hide a complex creation process
¢ Proxy: Provide Location transparency
¢ Command: Encapsulate control flow
¢ Observer: Provide publisher/subscribe mechanism
¢ Strategy: Support family of algorithms, separate of policy and mechanism

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

The use of inheritance

+ Inheritance is used to achieve two different goals
¢ Description of Taxonomies
¢ Interface Specification

¢ Identification of taxonomies

¢ Used during requirements analysis.

+ Activity: identify application domain objects that are
hierarchically related

¢ Goal: make the analysis model more understandable

¢ Service specification

¢ Used during object design

* Activity:

¢ Goal: increase reusability, enhance modifiability and extensibility
+ Inheritance 1s found either by specialization or generalization

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Metamodel for Inheritance

+ Inheritance 1s used during analysis and object design

Analysis
activity

Inheritance

N\

| O

)

Taxonomy

N

. ©O
Inheritance
for Reuse

A\

/\

Object
Design

Inheritance detected
by specialization

Inheritance detected
by generalization

Specification
Inheritance

Implementation
Inheritance

Bernd Bruegge & Allen Dutoit

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

10

Taxonomy Example

Mammal

AN

Tiger

Wolf

Wale

Bernd Bruegge & Allen Dutoit

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

11

Implementation Inheritance

¢ A very similar class 1s already implemented that does almost
the same as the desired class implementation.

+ Example: | have a List n deiSt
class, | need a Stack 0
class. How about Remove()

subclassing the Stack ~ "Already
class from the List class AN mplemented”
and providing three
methods, Push() and Stack
Pop(), Top()? Push ()

Pop()

Top()

Problem with implementation inheritance:

Some of the inherited operations might exhibit unwanted behavior.
What happens if the Stack user calls Remove() instead of Pop()?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Implementation Inheritance vs Interface Inheritance

+ Implementation inheritance
¢ Also called class inheritance

¢ Goal: Extend an applications’ functionality by reusing functionality
in parent class

¢ Inherit from an existing class with some or all operations already
implemented

¢ Interface inheritance
¢ Also called subtyping

¢ Inherit from an abstract class with all operations specified, but not
yet implemented

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Delegation as alternative to Implementation
Inheritance

+ Delegation is a way of making composition (for example
aggregation) as powerful for reuse as inheritance

+ In Delegation two objects are involved 1n handling a request
* A receiving object delegates operations to its delegate.

¢ The developer can make sure that the receiving object does not
allow the client to misuse the delegate object

Client calls | peceiver|Delegates to pelegate

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Duck: Delegation vs. Inheritance

¢ Description: Decide whether to use delegation or
inheritance for designing the following classes. Specify the
attributes and methods for each class. Draw the UML
diagram for the whole thing.

¢ Array

¢ Quecue

¢+ Stack \\(«

¢ Tree ;\

+ Linked list /; ;
¢ Process: -“(\v

¢ Work in pairs \ =

¢ You have about 10 minutes. (

\

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Delegation instead of Implementation Inheritance

+ Inheritance: Extending a Base class by a new operation or
overwriting an operation.

+ Delegation: Catching an operation and sending it to another
object.

+ Which of the following models is better for implementing a
stack? List

Add Stack .
j;Rem(c))ve() C[% ac List
Q A Remove()

+Push()
Stack +Pop() Add0
+Top()
+Push()
+Pop()
+Top()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Comparison: Delegation vs Implementation Inheritance

+ Delegation

¢ Pro:

¢ Flexibility: Any object can be replaced at run time by another one (as
long as it has the same type)

¢ Con:
¢ Inefficiency: Objects are encapsulated.

¢ Inheritance

¢ Pro:
¢ Straightforward to use
¢ Supported by many programming languages
+ Easy to implement new functionality
¢ Con:
+ Inheritance exposes a subclass to the details of its parent class

¢+ Any change in the parent class implementation forces the subclass to
change (which requires recompilation of both)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Component Selection

¢ Select existing
¢ off-the-shelf class libraries
¢ frameworks or
¢ components
¢ Adjust the class libraries, framework or components
¢ Change the API if you have the source code.

¢ Use the adapter or bridge pattern if you don’t have access

¢ Architecture Driven Design

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

18

Reuse...

<+ Look for existing classes in class libraries
+ JSAPI, JTAPI,

<+ Select data structures appropriate to the algorithms
¢ Container classes

* Arrays, lists, queues, stacks, sets, trees, ...

< It might be necessary to define new internal classes and
operations

¢+ Complex operations defined in terms of lower-level operations
might need new classes and operations

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

19

Frameworks

o A framework 1s a reusable partial application that can be
specialized to produce custom applications.

+ Frameworks are targeted to particular technologies, such as
data processing or cellular communications, or to application
domains, such as user interfaces or real-time avionics.

+ The key benefits of frameworks are reusability and
extensibility.
+ Reusability leverages of the application domain knowledge and
prior effort of experienced developers

+ Extensibility is provided by hook methods, which are overwritten
by the application to extend the framework.

¢+ Hook methods systematically decouple the interfaces and behaviors of
an application domain from the variations required by an application
in a particular context.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 20

Classification of Frameworks

+ Frameworks can be classified by their position in the software
development process.

+ Frameworks can also be classified by the techniques used to
extend them.

* Whitebox frameworks
¢+ Blackbox frameworks

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

21

Frameworks in the Development Process

¢ Infrastructure frameworks aim to simplify the software
development process
¢ System infrastructure frameworks are used internally within a
software project and are usually not delivered to a client.

+ Middleware frameworks are used to integrate existing
distributed applications and components.
¢+ Examples: MFC, DCOM, Java RMI, WebObjects, WebSphere,
WebLogic Enterprise Application [BEA].

+ Enterprise application frameworks are application specific and
focus on domains

¢+ Example domains: telecommunications, avionics, environmental
modeling, manufacturing, financial engineering, enterprise business
activities.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 22

White-box and Black-Box Frameworks

+ Whitebox frameworks:
¢ Extensibility achieved through inheritance and dynamic binding.

+ Existing functionality is extended by subclassing framework base
classes and overriding predefined hook methods

¢ Often design patterns such as the template method pattern are used
to override the hook methods.

¢ Blackbox frameworks

+ Extensibility achieved by defining interfaces for components that
can be plugged into the framework.

+ Existing functionality is reused by defining components that
conform to a particular interface

¢ These components are integrated with the framework via
delegation.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 23

Class libraries and Frameworks

¢ Class Libraries:
¢ Less domain specific
+ Provide a smaller scope of reuse.

¢ (Class libraries are passive; no constraint on control flow.

¢ Framework:
+ Classes cooperate for a family of related applications.
¢+ Frameworks are active; affect the flow of control.

+ In practice, developers often use both:

* Frameworks often use class libraries internally to simplify the
development of the framework.

+ Framework event handlers use class libraries to perform basic tasks
(e.g. string processing, file management, numerical analysis....)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 24

Components and Frameworks

+ Components
¢ Self-contained instances of classes
+ Plugged together to form complete applications.
¢ Blackbox that defines a cohesive set of operations,
¢ Can be used based on the syntax and semantics of the interface.

¢+ Components can even be reused on the binary code level.

¢ The advantage is that applications do not always have to be recompiled
when components change.

¢ Frameworks:
¢ Often used to develop components
¢+ Components are often plugged into blackbox frameworks.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 25

Example: Framework for Building Web Applications

% WebBrowser

WebObjects

>£Eiz§ WebObjectsApp1icatioH\
— = WORequest

7\
WebS i
Eg%g% ebserver WOAdapton—
_ WoRequest
Stati1cHTML

Template

EOF Y

\ L

EEEE%Re1ationa1Database

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

26

Finding Objects

+ The hardest problems 1n object-oriented system development
are:

¢ Identifying objects
¢ Decomposing the system into objects
+ Requirements Analysis focuses on application domain:

¢ Object identification

+ System Design addresses both, application and implementation
domain:

¢ Subsystem Identification

¢ Object Design focuses on implementation domain:

+ Additional solution objects

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 27

Techniques for Finding Objects

+ Requirements Analysis
+ Start with Use Cases. Identify participating objects
¢ Textual analysis of flow of events (find nouns, verbs, ...)

+ Extract application domain objects by interviewing client
(application domain knowledge)

+ Find objects by using general knowledge

¢ System Design
¢ Subsystem decomposition
+ Try to identify layers and partitions

¢ Object Design

+ Find additional objects by applying implementation domain
knowledge

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 28

Another Source for Finding Objects : Design Patterns

+ What are Design Patterns?

* A design pattern describes a problem which occurs over and
over again in our environment

¢ Then it describes the core of the solution to that problem, in
such a way that you can use this solution a million times over,
without ever doing it the same twice

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 29

Introducing the Composite Pattern
¢ Models tree structures that represent part-whole hierarchies with
arbitrary depth and width.

+ The Composite Pattern lets client treat individual objects and
compositions of these objects uniformly

Client Component ¢

A

Composite N
Leaf NS .
Operation() Children
Operation() AddComponent
RemoveComponent()
GetChild()

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 30

Modeling a Software System with a Composite Pattern

Software |-=
User
System
Class .
Subsystem Children

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 31

The Composite Patterns models dynamic aggregates

Fixed Structure:

Composite
Pattern

Car
* | *l |
Doors Wheels Battery Engine
Organization Chart (variable aggregate):
* *
University £ School K> Department
Program
T,
* |
Block
|
Compound Simple
Statement Statement

Bernd Bruegge & Allen Dutoit

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

32

Graphic Applications also use Composite Patterns

* The Graphic Class represents
both primitives (Line, Circle)
and their containers (Picture)

/
o O

Bernd Bruegge & Allen Dutoit

Object-Oriented Software Engineerin

GetChild(int)

Client Graphic ¢
_ Picture N
Line Circle N /—Ch'ld
Draw() ildren
Draw() Draw() Add(Graphic g)
RemoveGraphic)

g: Conquering Complex and Changing Systems 33

Design Patterns reduce the Complexity of Models

+ To communicate a complex model we use navigation and reduction of
complexity

¢+ We do not simply use a picture from the CASE tool and dump it in front of
the user

¢ The key is navigate through the model so the user can follow it.

+ We start with a very simple model and then decorate it incrementally
¢ Start with key abstractions (use animation)
¢ Then decorate the model with the additional classes

¢ To reduce the complexity of the model even further, we

¢ Apply the use of inheritance (for taxonomies, and for design patterns)
¢+ If the model is still too complex, we show the subclasses on a separate slide

¢ Then identify (or introduced) patterns in the model
¢+ We make sure to use the name of the patterns

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 34

Duck: Studying your object design

¢ Description:
¢+ Review your current object design.
¢ Identify any objects that are missing.
¢+ Does the composite pattern fit any part of your design?

¢+ Review all the attributes and methods, including their types
and visibility, of your objects. Fill in the missing attributes and

methods. («
¢ Process: ;\\\
¢ Work in teams /: N
¢ You have about 10 minutes. _“,\/ 2
S =
(

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 35

Adapter pattern

Client

¢ Delegation is used to

Clientinterface LegacyClass
Request() ExistingRequest()
| | adaptee
Adapter
Request()

bind an Adapter and an Adaptee

+ Interface inheritance is use to specify the interface of the Adapter class.

¢ Target and Adaptee (usually called legacy system) pre-exist the Adapter.

o Target may be realized as an interface in Java.

Bernd Bruegge & Allen Dutoit

Object-Oriented Software Engineering: Conquering Complex and Changing Systems 36

Adapter Pattern

¢ “Convert the interface of a class into another interface clients
expect.”

+ The adapter pattern lets classes work together that couldn’t
otherwise because of incompatible interfaces

+ Used to provide a new interface to existing legacy components
(Interface engineering, reengineering).

¢ Also known as a wrapper

+ Two adapter patterns:

¢ Class adapter:

¢ Uses multiple inheritance to adapt one interface to another
¢ Object adapter:

¢ Uses single inheritance and delegation

¢ Object adapters are much more frequent. We will only cover
object adapters (and call them therefore simply adapters)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 37

Bridge Pattern

+ Use a bridge to “decouple an abstraction from its
implementation so that the two can vary independently”. (From
[Gamma et al 1995])

+ Also know as a Handle/Body pattern.

+ Allows different implementations of an interface to be decided
upon dynamically.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 38

Using a Bridge

+ The bridge pattern is used to provide multiple implementations
under the same interface.

+ Examples: Interface to a component that 1s incomplete, not yet
known or unavailable during testing

+ JAMES Project: if seat data 1s required to be read, but the seat
1s not yet implemented, known, or only available by a
simulation, provide a bridge:

VIP

Seat
(in Vehicle Subsystem)

Bernd Bruegge & Allen Dutoit

imp

GetPosition()

SetPosition()

Seatimplementation

A

Stub Code

AlMSeat SARTSeat

Object-Oriented Software Engineering: Conquering Complex and Changing Systems 39

Bridge Pattern

Client

Abstraction

imp

Operation()

Impl ementor

©

Operationlmpl()

p

______ Imp->Op erationImp();

A

Refined Abstraction 1

Refined Abstraction 2 Concrete Implemen tor A

Operation()

Concrete Implemen tor B

Operation() Operationlmp 1()

Bernd Bruegge & Allen Dutoit

Operationlmp 1()

Object-Oriented Software Engineering: Conquering Complex and Changing Systems 40

Adapter vs Bridge

o Similarities:
+ Both are used to hide the details of the underlying implementation.

¢ Difference:

¢ The adapter pattern is geared towards making unrelated
components work together
¢ Applied to systems after they’re designed (reengineering, interface
engineering).
+ A bridge, on the other hand, is used up-front in a design to let
abstractions and implementations vary independently.
¢ Green field engineering of an “extensible system”

¢+ New “beasts” can be added to the “object zoo”, even if these are not
known at analysis or system design time.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 41

Facade Pattern

+ Provides a unified interface to a set of objects in a subsystem.

+ A facade defines a higher-level interface that makes the
subsystem easier to use (i.e. it abstracts out the gory details)

¢ Facades allow us to provide a closed architecture

A

H_h__‘_hhu

5~

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 42

Design Example

¢ Subsystem 1 can look into the
Subsystem 2 (vehicle subsystem)
and call on any component or class
operation at will.

¢ This is “Ravioli Design”
+ Why is this good?

+ Efficiency
¢ Why is this bad?

¢ Can’t expect the caller to
understand how the subsystem
works or the complex
relationships within the
subsystem.

¢ We can be assured that the
subsystem will be misused,
leading to non-portable code

Subsystem 1

bsys

AV \/ //

Seat

Card

AIM

SA/RT

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

43

Subsystem Design with Facade, Adapter, Bridge

+ The 1deal structure of a subsystem consists of
¢ an interface object

+ a set of application domain objects (entity objects) modeling real
entities or existing systems

+ Some of the application domain objects are interfaces to existing
systems

¢ one or more control objects

+ We can use design patterns to realize this subsystem structure

+ Realization of the Interface Object: Facade
¢ Provides the interface to the subsystem

+ Interface to existing systems: Adapter or Bridge
* Provides the interface to existing system (legacy system)
¢ The existing system is not necessarily object-oriented!

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

44

Realizing an Opaque Architecture with a Facade

+ The subsystem decides
exactly how it 1s accessed.

+ No need to worry about
misuse by callers

o+ If a facade 1s used the
subsystem can be used in an
early integration test

+ We need to write only a
driver

VIP Subsystem

Vehicle Subsystem API

Card

Seat—

AIM

SA/RT

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 45

Design Patterns encourage reusable Designs

+ A facade pattern should be used by all subsystems in a software system. The
facade defines all the services of the subsystem.

¢ The facade will delegate requests to the appropriate components within the
subsystem. Most of the time the facade does not need to be changed, when
the component is changed,

+ Adapters should be used to interface to existing components.

+ For example, a smart card software system should provide an adapter for a
particular smart card reader and other hardware that it controls and
queries.

+ Bridges should be used to interface to a set of objects
¢ where the full set is not completely known at analysis or design time.

¢ when the subsystem must be extended later after the system has been
deployed and client programs are in the field(dynamic extension).

¢ Model/View/Controller should be used

¢ when the interface changes much more rapidly than the application
domain.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 46

Review: Design pattern

A design pattern is...

..a template solution to a recurring design problem
¢ Look before re-inventing the wheel just one more time

..reusable design knowledge
+ Higher level than classes or datastructures (link lists,binary trees...)
+ Lower level than application frameworks

..an example of modifiable design
¢ Learning to design starts by studying other designs

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 47

Why are modifiable designs important?

A modifiable design enables...

...an 1terative and incremental development cycle
¢ concurrent development
¢+ risk management
¢+ flexibility to change

..to minimize the introduction of new problems when fixing old
ones

..to deliver more functionality after mitial delivery

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 48

What makes a design modifiable?

¢ Low coupling and high cohesion
¢ Clear dependencies

+ Explicit assumptions
How do design patterns help?

¢ They are generalized from existing systems
+ They provide a shared vocabulary to designers

+ They provide examples of modifiable designs
¢ Abstract classes
¢ Delegation

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

49

On to More Patterns!

¢ Creational Patterns
¢ Abstract Factory
¢ Builder

+ Behavioral pattern
¢ Command
¢ Observer
¢ Strategy

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

50

Proxy Pattern: Motivation

¢ It1s 15:00pm. I am sitting at my 14.4 baud modem connection
and retrieve a fancy web site from the US, This 1s prime web
time all over the US. So I am getting 10 bits/sec.

¢ What can I do?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

51

Proxy Pattern

+ What 1s expensive?
¢ Object Creation
¢ Object Initialization

+ Defer object creation and object initialization to the time you
need the object

¢ Proxy pattern:
¢ Reduces the cost of accessing objects

¢ Uses another object (“the proxy”) that acts as a stand-in for the real
object

¢ The proxy creates the real object only if the user asks for it

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 52

Proxy pattern Subject

A

[|
Proxy RealSubject

Request()

realSubject
g

Request() Request()

+ Interface inheritance 1s used to specify the interface shared by
Proxy and RealSubject.

+ Delegation is used to catch and forward any accesses to the
RealSubject (if desired)

¢ Proxy patterns can be used for lazy evaluation and for remote
invocation.

¢ Proxy patterns can be implemented with a Java interface.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

53

Proxy Applicability

¢ Remote Proxy
* Local representative for an object in a different address space
¢ Caching of information: Good if information does not change too
often
+ Virtual Proxy
+ Object is too expensive to create or too expensive to download

¢ Proxy is a stand-in

¢ Protection Proxy
+ Proxy provides access control to the real object

¢ Useful when different objects should have different access and
viewing rights for the same document.

¢+ Example: Grade information for a student shared by
administrators, teachers and students.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 54

Virtual Proxy example Image
boundingBox()

draw()
A

Proxylmage realSubject Real_lmage
boundingBox() > boundingBox()
draw() draw()

+ Images are stored and loaded separately from text

+ If a Reallmage 1s not loaded a Proxylmage displays a grey
rectangle in place of the image

+ The client cannot tell that it 1s dealing with a Proxylmage
instead of a Reallmage

¢ A proxy pattern can be easily combined with a Bridge

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 55

Before

[C] =Netscape: Cyberian Outpost - Computers notebooks desktops hardware & software - Buy it Today - Use = I 85
e ¢ A & 2 £ @ I S @ N
Back Forward Reload Harne Search Guide Irnages Print Security Stop
V Netsite \&,|http:.-"a"www.cgberianoutpogt.cc-rn.-" |
QUTPOST TODAY |
Jun. 10, 1998 =
The Cool Place to Shop For Computer Stufff
We Ship Internationally
Call: (800Y856-9800 | (360)927-2050 | Fax:(8601-927-8375 | E-mall: sales @oupost.com
I—"md I—Pd # GLOBAL VILLAGE
FPESKTOPS
| PPAS PLUS MAC OS 8
| MEMERY
| sOFTWARE
| PERIPHERALS
|m (LIMITED TIME OHLY) {LIMITED TIME
| NETWORKING)
IME&GR?E& PC Mﬂc PC n -
e cavemie- $99.95 §1549.00 $69.95 HIIXIIIIIIIF 63
[POWNLOAPS |euex To auy its| |euex To sy | |euex o suy it/ WE EA.T
S
F R LUNCH!
= | IZ

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Controlling Access

Preferences for Bernd Bruegge

Cateqgory :

= hppearance || Advanced Change preferences that affect the entire product.
Fonts
Calors

= Mawigator |:| dutornatically load irnages and other data types
Languages [Dtherwize, click the Images button to Toad when needed)
Applications

Enable J
Identity [Enabe Javs
[+ Advanced |E| Enable JawaScript

|E| Enable style sheets
[¥] Enable Autalnstall

|:| Send ernail address as anonymous FTP password

Cookies

{::l dcept all cookies
!} docept only cookies that get sent back to the oFiginating server
{::l Lo not accept cookies

|:| “Warn me before accepting a cookie

Help I [Cancel ||| OK

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

57

After

O
[

Metscape: Cyberian Qutpost = Computers notebooks desktops hardware & software = Buy it Today = Use

=) =]

4 w 4 2 £ @ 95 & @

Back Forward Reload Harne Search Guide Irnages Frint Security Stop

I3

21 Metsite: \&|http:.-".-"search.outpost.com.-"searcha"proddesc.cfm?item=?5]62&pod=1

Qﬂ QUTPOST TODAY
Jun. 10, 1998

The Cool Place to Shop For Computer Stuff/

We Ship Internationally /
Call (800 3%6-9300 | (3600927-2050 | Fax(360)-927-8375 | E-mail: sales @0 ulpost corm

=l

& R

& &

PC PC Mac
$59.95 $499.95 $1649.00

&g
%,

Power Search

=l

] »

1

[f | Transferring data from search.outpost.com

[7

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

58

Towards a Pattern Taxonomy

¢ Structural Patterns

+ Adapters, Bridges, Facades, and Proxies are variations on a single theme:
¢ They reduce the coupling between two or more classes
¢ They introduce an abstract class to enable future extensions
¢ They encapsulate complex structures

¢ Behavioral Patterns

¢ Here we are concerned with algorithms and the assignment of
responsibilies between objects: Who does what?

¢ Behavioral patterns allow us to characterize complex control flows that are
difficult to follow at runtime.

¢ Creational Patterns

¢ Here our goal is to provide a simple abstraction for a complex instantiation
process.

¢+ We want to make the system independent from the way its objects are
created, composed and represented.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 59

A Pattern Taxonomy

Structural
Pattern

Pattern
//k Creational
Pattern
Behavioral
Pattern J\
\

Abstract Builder

Observer| | Strategy Factory Pattern

Adapter

Bridge

Facade

Bernd Bruegge & Allen Dutoit

Proxy

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

60

Command Pattern: Motivation

¢ You want to build a user interface

¢ You want to provide menus

+ You want to make the user interface reusable across many
applications

+ You cannot hardcode the meanings of the menus for the various
applications

¢ The applications only know what has to be done when a menu is
selected.

+ Such a menu can easily be implemented with the Command
Pattern

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 61

Command pattern

Command
Invoker
execute()
Client A
l = _ binds |
eceiver ConcreteCommand
action() execute()
>

¢ Client creates a ConcreteCommand and binds i1t with a

Receiver.

¢ Client hands the ConcreteCommand over to the Invoker

which stores it.

+ The Invoker has the responsibility to do the command

(“execute” or “undo”).

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 62

Command pattern Applicability

+ “Encapsulate a request as an object, thereby letting you
¢ parameterize clients with different requests,
¢ queue or log requests, and
¢ support undoable operations.”

¢ Uses:
¢ Undo queues

¢ Database transaction buffering

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

63

Observer pattern

¢ “Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified
and updated automatically.”

¢ Also called “Publish and Subscribe”

¢ Uses:
¢+ Maintaining consistency across redundant state
¢ Optimizing batch changes to maintain consistency

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 64

Observer pattern (continued)

Observers Subject

9DesignPatterns2.ppt Info ‘1

ﬁ Sl l. i
.,'*, SDezignPatterns2 ppt '
e

Kind : PowerFPoint docurnent .'.
Size: 120K on dizk (127 285 bytes used)

Yhere: Teaching: TUM WS 97793
Cornp-Based Software Enginesring :

Comp-Based Software Engineering === M H ’.:'
]

.
.
e*

:bDesmnPatternsZ ppIJ

Marne Size Kind Last Modifi
SS5oftwarelifecycle pdf 410K Acrobat™ Exchange ...

SSoftwarelifecycle 3TIE PowerPoint docurment Fri, De

&Project Managernent 780K PowerPoint docurnent fﬁi}ﬁa‘
&Project Managerment . pdf 293K Acrobat™ Exchirq!
TSy=termnbeszign.pdf 25k Acr‘n:-l:-a;“d !}:change
TSystermbesignl.ppt 13?}{ Fh:nﬁ.rer'F'n:ﬂnt docurnent
g2lezignRationale pdf 3!@{ dcrobat™ Exchange ..
ShesignRationale ppt 208K PowerPoint docurnent
ShesignPatterns2.ppt Y 130K PowerPoint decurnent
LezignFatterns ppt 104k PowerPoint docurnent
Introduction. pdf 259K Acrobat™ Exchange ... Fri, Mo
[»

Sllelrl=ririririrrirlr

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 65

Observer pattern (cont’d)

Subject observers
attach(observer) > Observer
detach(observer) update()
notify() A
A .
| :
_ < subject ConcreteObserver
ConcreteSubject update()
getState()
setState(newState) observerState
subjectState

+ The Subject represents the actual state, the Observers
represent different views of the state.

+ Observer can be implemented as a Java interface.

+ Subject 1s a super class (needs to store the observers vector)
not an interface.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 66

Sequence diagram for scenario:

Change filename to “foo”

aFile aninfoView aListView

|:|: Attach() J_‘ Attach() i

them, asking for the new
state is decoupled from

the notification

update()

I I

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Animated Sequence diagram

aFile aninfoView aListView

|:|: Attach() J_‘ Attach() i

j_{ setState(“foo”)

=

.

|
|
notify() |
I
|

dat
update() | update()

getState()
............ (o M

S)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

A Pattern Taxonomy

Structural
Pattern

Pattern
//k Creational
Pattern
Behavioral
Pattern J\

AN ~
Abstract Builder
Factory Pattern

Adapter

Bridge

Facade

Bernd Bruegge & Allen Dutoit

Strategy

Proxy

Object-Oriented Software Engineering: Conquering Complex and Ch:

anging Systems

69

Strategy Pattern

¢ Many different algorithms exists for the same task

+ Examples:
+ Breaking a stream of text into lines
¢ Parsing a set of tokens into an abstract syntax tree
¢ Sorting a list of customers
+ The different algorithms will be appropriate at different times
+ Rapid prototyping vs delivery of final product

+ We don’t want to support all the algorithms if we don’t need
them

+ If we need a new algorithm, we want to add it easily without
disturbing the application using the algorithm

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

70

Strategy Pattern

.................... Policy
Context *
O > Strategy
Contextinterface() Algorithminterface
|
ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC
Algorithminterface() Algorithminterface() Algorithminterface()

Poli cy decides which Srat egy is best given the current Cont ext

Bernd Bruegge & Allen Dutoit

Object-Oriented Software Engineering: Conquering Complex and Changing Systems 71

Applying a Strategy Pattern in a Database Application

Database

*
-~ Strategy Strategy
Search() A Sort()

Sort() ‘Zk

BubbleSort QuickSort MergeSort

Sort() Sort() Sort()

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 72

Applicability of Strategy Pattern

+ Many related classes differ only in their behavior. Strategy
allows to configure a single class with one of many behaviors

+ Different variants of an algorithm are needed that trade-off
space against time. All these variants can be implemented as a
class hierarchy of algorithms

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 73

A Pattern Taxonomy

Structural
Pattern

Pattern

A

|

Behavioral
Pattern

Adapter

Bridge

Facade

Bernd Bruegge & Allen Dutoit

Strategy

Creational
Pattern

Abstract

Factory

Proxy

Object-Oriented Software Engineering: Conquering Complex and Ch:

anging Systems

Builder
Pattern

74

Abstract Factory Motivation

¢

¢

2 Examples

Consider a user interface toolkit that supports multiple looks
and feel standards such as Motif, Windows 95 or the finder in
MacOS.

+ How can you write a single user interface and make it portable
across the different look and feel standards for these window
managers?

Consider a facility management system for an intelligent house
that supports different control systems such as Siemens’
Instabus, Johnson & Control Metasys or Zumtobe’s proprietary
standard.

+ How can you write a single control system that is independent from
the manufacturer?

rnd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 75

Abstract Factory

AbstractFactory AbstractProductA
Client CreateProductA *
CreateProductB

/A ProductA1 ProductA2)- .

d

- .

9oncreteFactory i S AbstractProductB .
| - .
CreateProductA : -
CreateProductB . * .
Sy g EEEEEEEEEEEN * ProductB1 ProductB2 :

ConcreteFactory EEEEEER HEEEEEEEEEEEEEENEEEEEEEEEEEEEEEEESNm

~n

p4

CreateProductA Initiation Assocation:

CreateProductB Class ConcreteFactory2 initiates the
ssociated classes ProductB2 and ProductA

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 76

Applicability for Abstract Factory Pattern

¢ Independence from Initialization or Representation:

¢ The system should be independent of how its products are created,
composed or represented

¢ Manufacturer Independence:

¢ A system should be configured with one family of products, where one has
a choice from many different families.

* You want to provide a class library for a customer (“facility management
library”), but you don’t want to reveal what particular product you are
using.

+ Constraints on related products

+ A family of related products is designed to be used together and you need
to enforce this constraint

+ Cope with upcoming change:

¢ You use one particular product family, but you expect that the underlying
technology is changing very soon, and new products will appear on the
market.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

71

Example: A Facility Management System for the Intelligent

LightBulb

A

InstabusLight | | ZumbobelLight |

Controller Controller

Workplace
IntelligentWorkplace
Facility
Mgt InitLightSystem
System InitBlindSystem
InitACSystem
AN
SiemensFactory E:
InitLightSystem
InitBlindSystem
InitACSystem
ZumtobelFactor
y
InitLightSystem
InitBlindsystem
InitACSystem

Bernd Bruegge & Allen Dutoit

Blinds

A

InstabusBlind ZumtobelBlind
Controller Controller

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

78

Builder Pattern Motivation

¢ Conversion of documents

¢ Software companies make their money by introducing new
formats, forcing users to upgrades

¢ But you don’t want to upgrade your software every time there is an
update of the format for Word documents

¢ Idea: A reader for RTF format

¢ Convert RTF to many text formats (EMACS, Framemaker 4.0,
Framemaker 5.0, Framemaker 5.5, HTML, SGML, WordPerfect
3.5, WordPerfect 7.0,)

¢ Problem: The number of conversions is open-ended.
¢ Solution

¢ Configure the RTF Reader with a “builder” object that specializes
in conversions to any known format and can easily be extended to
deal with any new format appearing on the market

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 79

Builder Pattern

Director N Builder
Construct() | |~ BuildPart()
o
For all objects in Structure { /\
Builder->BuildPart()
}
ConcreteBuilderB !
BuildPart()
GetResult()

ConcreteBuilder
A BuildPart()
GetResult()

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

*+| Represen-
tation A

Represen-
tation B

80

Example

RTFReade

' Parse() O\ TextConverter
ConvertCharacter()

ConvertFontChange
_ N> ConvertParagraph()
While (t = GetNextToken()) {
Switch t.Type {
CHAR: builder->ConvertCharacter(t.Char)
FONT: builder->ConvertFont(t.Font)
PARA: builder->ConvertParagraph
}
)
TexConverter . AsciiConverter N HTMLCOnverter:
-L & 2
ConvertCharacter() = ConvertCharacter ConvertCharacter
ConvertFontChange, ConvertFontChaﬂé)e Con\),ertFontCh é)e
ConvertPara ra?h().' ConvertParagraph() ConvertParagraph()
GetASClIText() . GetASCII exi) GetASClIText()
: :
; ;
r TeXText AsciiText [HTMLText

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

81

When do you use the Builder Pattern?

+ The creation of a complex product must be independent of the
particular parts that make up the product

¢ In particular, the creation process should not know about the
assembly process (how the parts are put together to make up the
product)

+ The creation process must allow different representations for
the object that 1s constructed. Examples:

+ A house with one floor, 3 rooms, 2 hallways, 1 garage and three
doors.

+ A skyscraper with 50 floors, 15 offices and 5 hallways on each floor.
The office layout varies for each floor.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 82

Comparison: Abstract Factory vs Builder

¢ Abstract Factory

+ Focuses on product family
¢ The products can be simple (“light bulb”) or complex (“engine”)

+ Does not hide the creation process
¢ The product is immediately returned

¢ Builder

¢ The underlying product needs to be constructed as part of the
system, but the creation is very complex

¢ The construction of the complex product changes from time to time

¢ The builder patterns hides the creation process from the user:
¢ The product is returned after creation as a final step

¢ Abstract Factory and Builder work well together for a family of
multiple complex products

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 83

Summary 1

¢ Object design closes the gap between the requirements and
the machine.

¢ Object design 1s the process of adding details to the
requirements analysis and making implementation decisions
¢ Object design activities include:
v' Identification of Reuse
v" Identification of Inheritance and Delegation opportunities
v" Component selection
¢ Object design 1s documented in the Object Design Document,

which can be automatically generated from a specification
using tools such as JavaDoc.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 84

Summary I1

+ Design patterns are partial solutions to common problems such
as

¢ such as separating an interface from a number of alternate
implementations

+ wrapping around a set of legacy classes
¢ protecting a caller from changes associated with specific platforms.

¢ A design pattern 1s composed of a small number of classes
¢ use delegation and inheritance
¢ provide a robust and modifiable solution.

+ These classes can be adapted and refined for the specific
system under construction.

¢ Customization of the system
+ Reuse of existing solutions

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 85

Summary II1

+ Composite Pattern:
¢+ Models trees with dynamic width and dynamic depth

+ Facade Pattern:
¢ Interface to a subsystem
¢ closed vs open architecture

+ Adapter Pattern:
+ Interface to reality

+ Bridge Pattern:
+ Interface to reality and prepare for future

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

86

Summary IV

¢ Structural Patterns
¢ Focus: How objects are composed to form larger structures
¢ Problems solved:
¢ Realize new functionality from old functionality,
¢ Provide flexibility and extensibility
+ Behavioral Patterns
¢ Focus: Algorithms and the assignment of responsibilities to objects
¢ Problem solved:
¢ Too tight coupling to a particular algorithm
+ Creational Patterns
¢ Focus: Creation of complex objects
¢ Problems solved:
¢+ Hide how complex objects are created and put together
¢ Design patterns
¢ Provide solutions to common problems.
¢ Lead to extensible models and code.
¢ Can be used as is or as examples of interface inheritance and delegation.
¢ Apply the same principles to structure and to behavior.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 87

