
U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-
O

ri
en

te
d

So
ft

w
ar

e
E

ng
in

ee
ri

ng

Chapter 7
Addressing Design Goals

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Overview

System Design I (previous lecture)
0. Overview of System Design
1. Design Goals
2. Subsystem Decomposition

System Design II
3. Concurrency
4. Hardware/Software Mapping
5. Persistent Data Management
6. Global Resource Handling and Access Control
7. Software Control
8. Boundary Conditions

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

3. Concurrency
♦ Identify concurrent threads and address concurrency issues.
♦ Design goal: response time, performance.

♦ Threads
A thread of control is a path through a set of state diagrams on
which a single object is active at a time.
A thread remains within a state diagram until an object sends an
event to another object and waits for another event
Thread splitting: Object does a nonblocking send of an event.

♦ Two objects are inherently concurrent if they can receive
events at the same time without interacting

♦ Inherently concurrent objects should be assigned to different
threads of control

♦ Objects with mutual exclusive activity should be folded into a
single thread of control (Why?)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Implementing Concurrency

♦ Concurrent systems can be implemented on any system that
provides

physical concurrency (hardware)
or

logical concurrency (software): Scheduling problem
(Operating systems)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Classroom Activity – Concurrency
♦ Description: For your design identify the potential

concurrency.
Which objects of the object model are independent?
What kinds of threads of control are identifiable?
Does the system provide access to multiple users?
Can a single request to the system be decomposed
into multiple requests? Can these requests be
handled in parallel?

♦ Process:
Meet as teams

Choose a scribe to record design goals
Use questions
You have about 5 minutes.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

4. Hardware Software Mapping

♦ This activity addresses two questions:
How shall we realize the subsystems: Hardware or Software?
How is the object model mapped on the chosen hardware &
software?

Mapping Objects onto Reality: Processor, Memory, Input/Output
Mapping Associations onto Reality: Connectivity

♦ Much of the difficulty of designing a system comes from
meeting externally-imposed hardware and software constraints.

Certain tasks have to be at specific locations

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Mapping the Objects

♦ Processor issues:
Is the computation rate too demanding for a single processor?
Can we get a speedup by distributing tasks across several
processors?
How many processors are required to maintain steady state load?

♦ Memory issues:
Is there enough memory to buffer bursts of requests?

♦ I/O issues:
Do you need an extra piece of hardware to handle the data
generation rate?
Does the response time exceed the available communication
bandwidth between subsystems or a task and a piece of hardware?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Mapping the Subsystems Associations:
Connectivity
♦ Describe the physical connectivity of the hardware

Often the physical layer in ISO’s OSI Reference Model
Which associations in the object model are mapped to physical
connections?
Which of the client-supplier relationships in the analysis/design model
correspond to physical connections?

♦ Describe the logical connectivity (subsystem associations)
Identify associations that do not directly map into physical
connections:

How should these associations be implemented?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Typical Informal Example of a Connectivity Drawing
Application

Client
Application

Client
Application

Client

Communication
Agent for

Application Clients

Communication
Agent for

Application Clients

Communication
Agent for Data

Server

Communication
Agent for Data

Server

Local Data
Server

Global Data
Server

Global
Data

Server

Global
Data

Server

OODBMS

RDBMS

Backbone Network

LAN

LAN

LAN

TCP/IP Ethernet

Physical
Connectivity

Logical
Connectivity

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Connectivity in Distributed Systems
♦ If the architecture is distributed, we need to describe the network

architecture (communication subsystem) as well.
♦ Questions to ask

What are the transmission media? (Ethernet, Wireless)
What is the Quality of Service (QOS)? What kind of communication
protocols can be used?
Should the interaction asynchronous, synchronous or blocking?
What are the available bandwidth requirements between the
subsystems?

Stock Price Change -> Broker
Icy Road Detector -> ABS System

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Drawing Hardware/Software Mappings in
UML
♦ System design must model static and dynamic structures:

Component Diagrams for static structures
show the structure at design time or compilation time

Deployment Diagram for dynamic structures
show the structure of the run-time system

♦ Note the lifetime of components
Some exist only at design time
Others exist only until compile time
Some exist at link or runtime

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Component Diagram

♦ Component Diagram
A graph of components connected by dependency relationships.
Shows the dependencies among software components

source code, linkable libraries, executables

♦ Dependencies are shown as dashed arrows from the client
component to the supplier component.

The kinds of dependencies are implementation language specific.

♦ A component diagram may also be used to show dependencies
on a façade:

Use dashed arrow the corresponding UML interface.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Component Diagram Example

UML Interface
UML Component

Scheduler

Planner

GUI

reservations

update

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Deployment Diagram

♦ Deployment diagrams are useful for showing a system design
after the following decisions are made

Subsystem decomposition
Concurrency
Hardware/Software Mapping

♦ A deployment diagram is a graph of nodes connected by
communication associations.

Nodes are shown as 3-D boxes.
Nodes may contain component instances.
Components may contain objects (indicating that the object is part
of the component)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Deployment Diagram Example

Runtime
Dependency

Compile Time
Dependency

:Planner

:PC

:Scheduler

:HostMachine
<<database>>
meetingsDB

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

CAT – Hardware/Software Mapping
♦ Description: For your design, map the software to hardware.

What is the connectivity among physical units?
Tree, star, matrix, ring

What is the appropriate communication protocol between the subsystems?
Function of required bandwidth, latency and desired reliability, desired quality
of service (QOS)

Is certain functionality already available in hardware?
Do certain tasks require specific locations to control the hardware
or to permit concurrent operation?

Often true for embedded systems
General system performance question:

What is the desired response time?

♦ Process:
Meet as teams

Choose a scribe to record design goals
Use questions
You have about 10 minutes.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

5. Data Management
♦ Some objects in the models need to be persistent

Provide clean separation points between subsystems with well-
defined interfaces.

♦ A persistent object can be realized with one of the following
Data structure

If the data can be volatile
Files

Cheap, simple, permanent storage
Low level (Read, Write)
Applications must add code to provide suitable level of abstraction

Database
Powerful, easy to port
Supports multiple writers and readers

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

File or Database?

♦ When should you choose a file?
Are the data voluminous (bit maps)?
Do you have lots of raw data (core dump, event trace)?
Do you need to keep the data only for a short time?
Is the information density low (archival files,history logs)?

♦ When should you choose a database?
Do the data require access at fine levels of details by multiple users?
Must the data be ported across multiple platforms (heterogeneous
systems)?
Do multiple application programs access the data?
Does the data management require a lot of infrastructure?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Database Management System

♦ Contains mechanisms for describing data, managing persistent
storage and for providing a backup mechanism

♦ Provides concurrent access to the stored data
♦ Contains information about the data (“meta-data”), also called

data schema.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Issues To Consider When Selecting a
Database
♦ Storage space

Database require about triple the storage space of actual data
♦ Response time

Mode databases are I/O or communication bound (distributed databases).
Response time is also affected by CPU time, locking contention and delays
from frequent screen displays

♦ Locking modes
Pessimistic locking: Lock before accessing object and release when object
access is complete
Optimistic locking: Reads and writes may freely occur (high concurrency!)
When activity has been completed, database checks if contention has
occurred. If yes, all work has been lost.

♦ Administration
Large databases require specially trained support staff to set up security
policies, manage the disk space, prepare backups, monitor performance,
adjust tuning.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Object-Oriented Databases

♦ Support all fundamental object modeling concepts
Classes, Attributes, Methods, Associations, Inheritance

♦ Mapping an object model to an OO-database
Determine which objects are persistent.
Perform normal requirement analysis and object design
Create single attribute indices to reduce performance bottlenecks
Do the mapping (specific to commercially available product).
Example:

In ObjectStore, implement classes and associations by preparing C++
declarations for each class and each association in the object model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Relational Databases

♦ Based on relational algebra
♦ Data is presented as 2-dimensional tables. Tables have a

specific number of columns and and arbitrary numbers of rows
Primary key: Combination of attributes that uniquely identify a
row in a table. Each table should have only one primary key
Foreign key: Reference to a primary key in another table

♦ SQL is the standard language defining and manipulating tables.
♦ Leading commercial databases support constraints.

Referential integrity, for example, means that references to entries
in other tables actually exist.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Classroom Activity – Data Management
♦ Description: Design the data management for your system.

Should the data be distributed?
Should the database be extensible?
How often is the database accessed?
What is the expected request (query) rate? In the worst case?
What is the size of typical and worst case requests?
Do the data need to be archived?
Does the system design try to hide the location of the databases
(location transparency)?
Is there a need for a single interface to access the data?
What is the query format?
Should the database be relational or object-oriented?

♦ Process:
Meet as teams

Choose a scribe to record design goals
Use questions
You have about 10 minutes.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

6. Global Resource Handling

♦ Discusses access control
♦ Describes access rights for different classes of actors
♦ Describes how object guard against unauthorized access

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Defining Access Control

♦ In multi-user systems different actors have access to different
functionality and data.

During analysis we model these different accesses by associating
different use cases with different actors.
During system design we model these different accesses by examing
the object model by determining which objects are shared among actors.

Depending on the security requirements of the system, we also define how
actors are authenticated to the system and how selected data in the system
should be encrypted.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Access Matrix

♦ We model access on classes with an access matrix.
The rows of the matrix represents the actors of the system
The column represent classes whose access we want to control.

♦ Access Right: An entry in the access matrix. It lists the
operations that can be executed on instances of the class by the
actor.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Access Matrix Implementations

♦ Global access table: Represents explicitly every cell in the
matrix as a (actor,class, operation) tuple.

Determining if an actor has access to a specific object requires
looking up the corresponding tuple. If no such tuple is found, access
is denied.

♦ Access control list associates a list of (actor,operation) pairs
with each class to be accessed.

Every time an object is accessed, its access list is checked for the
corresponding actor and operation.
Example: guest list for a party.

♦ A capability associates a (class,operation) pair with an actor.
A capability provides an actor to gain control access to an object of

the class described in the capability.
Example: An invitation card for a party.

♦ Which is the right implementation?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Global Resource Questions

♦ Does the system need authentication?
♦ If yes, what is the authentication scheme?

User name and password? Access control list
Tickets? Capability-based

♦ What is the user interface for authentication?
♦ Does the system need a network-wide name server?
♦ How is a service known to the rest of the system?

At runtime? At compile time?
By port?
By name?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

7. Decide on Software Control

Choose implicit control (non-procedural, declarative languages)
Rule-based systems
Logic programming

Choose explicit control (procedural languages): Centralized or
decentralized

Centralized control: Procedure-driven or event-driven
♦ Procedure-driven control

Control resides within program code. Example: Main program
calling procedures of subsystems.
Simple, easy to build, hard to maintain (high recompilation costs)

♦ Event-driven control
Control resides within a dispatcher calling functions via callbacks.
Very flexible, good for the design of graphical user interfaces, easy
to extend

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Event-Driven Control Example: MVC

♦ Model-View-Controller Paradigm (Adele Goldberg, Smalltalk
80)

:Control

:Model :View :View

:View
Model has changed

Update Update

Update

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Software Control (continued)

♦ Decentralized control
Control resides in several independent objects.
Possible speedup by mapping the objects on different processors,
increased communication overhead.
Example: Message based system.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Centralized vs. Decentralized Designs
♦ Should you use a centralized or decentralized design?

Take the sequence diagrams and control objects from the analysis
model
Check the participation of the control objects in the sequence
diagrams

If sequence diagram looks more like a fork: Centralized design
The sequence diagram looks more like a stair: Decentralized design

♦ Centralized Design
One control object or subsystem ("spider") controls everything

Pro: Change in the control structure is very easy
Con: The single conctrol ojbect is a possible performance bottleneck

♦ Decentralized Design
Not a single object is in control, control is distributed, That means,
there is more than one control object

Con: The responsibility is spread out
Pro: Fits nicely into object-oriented development

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Classroom Activity – Control

♦ Description: Select the type of software
control for your system and justify your
selection.

Procedural
Event-driven
Threads

♦ Process:
Meet as teams

Choose a scribe to record design goals

You have about 10 minutes.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

8. Boundary Conditions

♦ Most of the system design effort is concerned with steady-state
behavior.

♦ However, the system design phase must also address the
initiation and finalization of the system. This is addressed by a
set of new uses cases called administration use cases

Initialization
Describes how the system is brought from an non initialized state to
steady-state ("startup use cases”).

Termination
Describes what resources are cleaned up and which systems are
notified upon termination ("termination use cases").

Failure
Many possible causes: Bugs, errors, external problems (power supply).
Good system design foresees fatal failures (“failure use cases”).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Example: Administrative Use cases for
MyTrip
♦ Administration use cases for MyTrip (UML use case diagram).
♦ An additional subsystems that was found during system design

is the server. For this new subsystem we need to define use
cases.

♦ ManageServer includes all the functions necessary to start up
and shutdown the server.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

ManageServer Use Case

PlanningService

ManageServer

Administrator
StartServer

ShutdownServer

ConfigureServer

<<include>>

<<include>>

<<include>>

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Modeling Boundary Conditions

♦ Boundary conditions are best modeled as use cases with actors
and objects.

♦ Actor: often the system administrator
♦ Interesting use cases:

Start up of a subsystem
Start up of the full system
Termination of a subsystem
Error in a subystem or component, failure of a subsystem or
component

♦ Task:
Model the startup of the ARENA system as a set of use cases.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Classroom Activity – Partitioning
♦ Description: Partition you system into subsystems using the ideas of coupling and

cohesion.
Initialization

How does the system start up?
– What data need to be accessed at startup time?
– What services have to registered?

What does the user interface do at start up time?
– How does it present itself to the user?

Termination
Are single subsystems allowed to terminate?
Are other subsystems notified if a single subsystem terminates?
How are local updates communicated to the database?

Failure
How does the system behave when a node or communication link
fails? Are there backup communication links?
How does the system recover from failure? Is this different
from initialization?

♦ Process:
Meet as teams, Use questions, You have about 10 minutes.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

Summary

Activities of system design :
♦ Concurrency identification
♦ Hardware/Software mapping
♦ Persistent data management
♦ Global resource handling
♦ Software control selection
♦ Boundary conditions

Each of these activities revises the subsystem decomposition to
address a specific issue. Once these activities are completed,
the interface of the subsystems can be defined.

