ineering

Object-Oriented Software Eng

Using UML, Patterns, and Java

Overview: More detail on modeling with UML

+ Use case diagrams
¢ Class diagrams

+ Sequence diagrams
+ Activity diagrams

Other UML Notations

UML provide other notations that we will be introduced in

subsequent lectures, as needed.

+ Implementation diagrams
+ Component diagrams
+ Deployment diagrams

+ Introduced in lecture on System Design

+ Object constraint language

+ Introduced in lecture on Object Design

Berd Bracgge & Allen H. Dutot

UML Core Conventions

+ Rectangles are classes or instances

+ Ovals are functions or use cases

+ Instances are denoted with an underlined names
+ my Watch: § npl eWastch
+ Joe Frefighter

+ Types are denoted with non underlined names
+ 9 npleWatch
* Frefighter

+ Diagrams are graphs
+ Nodes are entities
+ Arcs are relationships between entities

Use Case Diagrams

Passenger

AN

C_>

Pur chaseTi cket

-

-

-

-

Used during requirements
elicitation to represent external
behavior

Actors represent roles, that is, a
type of user of the system

Use cases represent a sequence of
interaction for a type of
functionality

The use case model is the set of
all use cases. It is a complete
description of the functionality of
the system and its environment

Actors

+ An actor models an external entity which
communicates with the system:
* User
+ External system
¢ Physical environment
+ An actor has a unique name and an optional

Passenger description.

+ Examples:

+ Passenger: A person in the train

+ GPS satellite: Provides the system with GPS
coordinates

e 1. D . Using UL “

Use Case Use Case Diagram: Example

A use case represents a class of Name: Purchase ti cket Event flow:
functionality provided by the system as 1. Passenger selects the number of
an event flow. Participating actor: Passenger zones to be traveled.

2. [Distributor displays the amount
Ent it due.
; . ntry condition: .
A use case consists of g 3. Passenger inserts money, of at

. + Passenger standing in front of
Pur chaseTi cket + Unique name ticket disgtributor. 2 least the amount due.

+ Participating actors + Passenger has sufficient money
+ Entry conditions to purchase ticket.

4. Distributor returns change.
5. Distributor issues ticket.

+ Flow of events

Exit condition: . .
. .. ?
+ Exit conditions + Passenger has ticket. Anythmg missing+
« Special requirements Exceptional cases!
The <<extends>> Relationship The << nd udes>> Relationship

+ <<extends>> relationships

represent exceptional or seldom . . .
insokc d cascsp + << nd udes>> relationship
. represents behavior that is factored

+ The exceptional event flows are

out of the use case.
Passenger factored out of the main event flow Passenger \ <<i nd udes>> behavior is factored

-

for clarity. P
| 4 . X | out for reuse, not because it is an
+ Use cases representing exceptional Pur chase Ml ti Car d exception.
flows can extend more than one he directi fa<d
PurchaseTi cket use case. Pur chased ng eTi cket « The direction of a << ndudes>>
o <<ind udes>> relationship is to the using use case

The direction of a <<extends>> < nd udes (unlike <<ext ends>>

<<extends>> relationship is to the extended use <di nd udes>> relationships).
case

<<ext ends>:

<<extends>> O Coll ect Mone:
<<ext ends>/ Y \<<e><l ends>>

Out 4 O der <<extends>> T meOut : :
O O No Change Cancel

Cancel No Change

Berd Bracgge & Allen H. Dutot ’ ten H. Dutoi ” Using UMIL, Paterns, and 3 w

Use Case Diagrams: Summary Class Diagrams

+ Use case diagrams represent external behavior

+ Use case diagrams are useful as an index into the use cases l Tarif Schedul e -
- . | i p
+ Use case descriptions provide meat of model, not the use case Enu mer atf on get Zones() . R zone: Zone
diagrams. Pri ce get Pri ce(Zone) Price Pice
+ All use cases need to be described for the model to be useful.

+ Class diagrams represent the structure of the system.

¢ Used
+ during requirements analysis to model problem domain concepts
+ during system design to model subsystems and interfaces
¢ during object design to model classes.

e 1. D . sing UML n len 1. D Using 2

Classes

Tarif Schedul e

[Table zone2price

Enu mer ati on get Zones()
Name Price get Ri ce(Zone)

Tarif Schedu e X
Zone2pri ce Signature
get Zones()

+ A class represent a concept

+ A class encapsulates state (attributes) and behavior (operations).
+ Each attribute has a type.

+ Each operation has a signature.

+ The class name is the only mandatory information.

: Using UMIL, P "

get Pice() -
Operations Tarif Schedu e

Instances

tarif 1974 Tarif Schedu e
zone2price ={
{1, .20,
{2,.40,
{'3,.60}}

¢ An instance represents a phenomenon.

+ The name of an instance is underlined and can contain the class of the
instance.

+ The attributes are represented with their values.

Using UMIL, P "

Actor vs Instances

+ What is the difference between an actor , a class and an
instance?

+ Actor:

+ An entity outside the system to be modeled, interacting with the
system (“Passenger”)

+ Class:

+ An abstraction modeling an entity in the problem domain, must be
modeled inside the system (“User”)

+ Object:

+ A specific instance of a class (“Joe, the |

who is purch
a ticket from the ticket distributor”).

8

Associations

[Tarif Schedul e ‘ TripLeg

[!)
Enumer ati on get Zones() * . Price
Pri ce get Pri ce(Zone) Zone

+ Associations denote relationships between classes.

+ The multiplicity of an association end denotes how many objects the source
object can legitimately reference.

Using UMIL, Paterns, and 3 1

1-to-1 and 1-to-many Associations

Country | Has-capital City
*

name:String name:String|

One-to-one association

Point

Polygon *
x: Integer
draw() y: Integer

One-to-many association

Many-to-Many Associations

- Lists -
StockExchange Company
tickerSymbol
* Lists J
Compan
StockExchange o ersymbo | {sx_p Pany

Using s

From Problem Statement To Object Model

Problem Statement: A stock exchange lists many companies. Each
company is uniquely identified by a ticker symbol

Class Diagram:

* | Company

StockExchange

Lists

tickerSymbol

From Problem Statement to Code

Problem Statement : A stock exchange lists many companies.
Each company is identified by a ticker Symbol

Class Diagram:
StockExchange ‘

Company

tickerSymbol

Java Code
]{mhlic class StockExchange

private Vector m_Company = new Vector();
b
public class Company

public int m_tickerSymbol;
private Vector m_StockExchange = new Vector();

b

Aggregation

+ An aggregation is a special case of association denoting a “consists of”
hierarchy.

+ The aggregate is the parent class, the components are the children class.
0.2 1 T T -

| o
Muffler Tailpipe Muffler Tailpipe
diameter diameter diameter diameter

+ A solid diamond denotes composition, a strong form of aggregation where
components cannot exist without the aggregate. (Bill of Material)

Ti cket Machi ne

ZoneButton

Using UMIL n

Qualifiers

Without qualification
1 + W.RM

Orectory %, filename

With qualification &

. - 1 0
Drectary

+ Qualifiers can be used to reduce the multiplicity of an
association.

Using UMIL, Paterns, and 3 2

Inheritance

Cance Button ZoneButton

+ The children classes inherit the attributes and operations of the
parent class.

+ Inheritance simplifies the model by eliminating redundancy.

Object Modeling in Practice: Class ldentification

Foo

Betrag
Customerld

Deposit()
Withdraw()
GetBalance(|

Class Identification: Name of Class, Attributes and Methods

en 1. Using

Object Modeling in Practice:
Encourage Brainstorming

- L/
I
™ » E\\ ///é/
S ~ \\ j—
Betrag Betrag = =
c 1d Customerld - °
Deposit() Deposit()
Withdraw() Withdraw() o
GetBalance(| GetBalance(| P
Account
Betrag
Customerld
Naming is important! \?v?ﬁ-,%s,l;a()
Is Foo the right name? GetBalance(

Object Modeling in Practice ctd

Account
Betrag Customer
Bank Accountld
Name
Deposit()
Name Withdraw() Customerld
GetBalance(

1) Find New Objects

2) Iterate on Names, Attributes and Methods

Object Modeling in Practice: A Banking System

Account
Betrag * Customer
Bank Accountld Has
Name
Deposit()
Name Withdraw() Customerld
GetBalance(|

1) Find New Objects

2) Iterate on Names, Attributes and Methods

3) Find Associations between Objects
4) Label the assocations
5) Determine the multiplicity of the assocations

Dt . Using UL n

Practice Object Modeling: Iterate, Categorize!

Account
Bank Customer

* [Amount *

Name Q/ Accountid Has | Name

Beposit()
Withdraw()
GetBalance(; Customerld()

Savings Checking Mortgage
Account Account Account

Withdraw() Withdraw() Withdraw()

ten H. Dutoi b Using UMIL, Paterns, and 3 »

Packages

+ A package is a UML mechanism for organizing elements into
groups (usually not an application domain concept)

+ Packages are the basic grouping construct with which you may
organize UML models to increase their readability.

O spat cherl nterface
Notifi cati on Ind dent Manage ment

¢ A complex system can be decomposed into subsystems, where
each subsystem is modeled as a package

e 1. D . Csing UL »

UML sequence diagrams

-

Used during requirements analysis

; : i cket Machi ne + To refine use case descriptions

> + to find additional objects

[_sel ect Zoneq) D (“participating objects”)

Used during system design

-

! + to refine subsystem interfaces
i i Classes are represented by
columns
T Messages are represented by

arrows
Activations are represented by

narrow rectangles

Lifelines are represented by

pi ckUpTi cket, > dashed lines

-

-

-

-

Nested messages

X

Passenger l ZoneButton l l Tarif Schedu e l l O spay
o uise- fj
[__dsdayrice(mice U
Dataflow i

' ...to be continued...

+ The source of an arrow indicates the activation which sent the message
+ An activation is as long as all nested activations

+ Horizontal dashed arrows indicate data flow

+ Vertical dashed lines indicate lifelines

: Using U 2

Iteration & condition

% ...continued from previous slide...

Coi nDrop

lchangeﬁocessor l l Coi rl dentifier l l O spay

ert Change(can) |

| ookup Coi n(ca n)f
f——>

leprice __
d spl ayPri ce{ owedAmount)

g

L [owedAmount <0 iret w nChange(- owedAmpunt)

; 1

...to be continued...

Condition

+ lIteration is denoted by a * preceding the message name

+ Condition is denoted by boolean expression in [] before the message
name

Using UMIL, P »

Creation and destruction

% ...continued from previous slide...
Passenger ChangePr ocessor

creat eTi cket (s on)

print) >t

free)

+ Creation is denoted by a message arrow pointing to the object.
+ Destruction is denoted by an X mark at the end of the destruction activation.

+ In garbage collection environments, destruction can be used to denote the
end of the useful life of an object.

Dt b Using UM »

Sequence Diagram Summary

+ UML sequence diagram represent behavior in terms of
interactions.

+ Useful to find missing objects.
+ Time consuming to build but worth the investment.

+ Complement the class diagrams (which represent structure).

ten H. Dutoi b Using UMIL, Paterns, and 3 .

State Chart Diagrams

Initial state

[but t on2Pr essed]
8li nkHour s _
[but t on1Pr essed]

[but t on1&2Pr essed] [but ton2Pr essed]
BlinkMnutes [>{incrementMn

[but ton1Pressed]

t t on182Pr essed] ﬁﬁ [but t on2Pr essed]
U I ncrenent Sec.

StopBlinking |—=>@ M

Represent behavior as states and transitions

I

[but tdR182Pr essed]

=

Activity Diagrams

+ An activity diagram shows flow control within a system

(ot (s J—(s)

+ An activity diagram is a special case of a state chart diagram in
which states are activities (“functions™)
Two types of states:
* Action state:
+ Cannot be decomposed any further

+ Happens “instantaneously” with respect to the level of abstraction
used in the model

* Activity state:
¢ Can be decomposed further
+ The activity is modeled by another activity diagram

-

len 1. D Using s

Statechart Diagram vs. Activity Diagram

Statechart Diagram for Incident (similar to Mealy Aut on)
(State: Attribute or Collection of Attributes of object of type Incident)

Event causes
tate transitio

@ i
Indi dent- Ind dent-

Ind dent-

Hand ed Document ed Archived %

Archive
I nci dent

Triggerless
Transition

Activity Diagram for Incident (similar to Moore
(State: Operation or Collection of Operations)

Handl e Document
I nci dent I nci dent

Completion of activity
causes state transition

Activity Diagram: Modeling Decisions

[lowPriority]
Open Al l ocate
I nci dent \Resources

[fire & highPriority]

[not fire & highPr{ority]

Noti fy
Fire Chief

Noti fy
Pol i ce Chi ef

Using UMIL, P 3

Activity Diagrams: Modeling Concurrency

+ Synchronization of multiple activities
+ Splitting the flow of control into multiple threads

Al l ocate
Resour ces S on

Ar chive
I nci dent

Coordi nat e
Resour ces

Document
I nci dent

Dt b Using UL »

Activity Diagrams: Swimlanes

+ Actions may be grouped into swimlanes to denote the object or
subsystem that implements the actions.

Alocate O spat cher

Resources

Coordnate ||
Resources

F d ddficer
= Docu ment

ten H. Dutoi b Using UMIL “

What should be done first? Coding or Modeling?
¢ It all depends....

+ Forward Engineering:
+ Creation of code from a model
+ Greenfield projects
+ Reverse Engineering:
+ Creation of a model from code
+ Interface or reengineering projects
+ Roundtrip Engineering:
+ Move constantly between forward and reverse engineering

+ Useful when requir hnology and
frequently

hednl 1

are

e 1. D . Csing UL @

UML Summary

+ UML provides a wide variety of notations for representing
many aspects of software development
+ Powerful, but complex language
+ Can be misused to generate unreadable models
+ Can be misunderstood when using too many exotic features

+ For now we concentrate on a few notations:
+ Functional model: Use case diagram
+ Object model: class diagram

+ Dynamic model: sequence diagrams, statechart and activity
diagrams

Using @

