Chapter 2, lecture 1,
Merlln%MltthML

Object-Oriented Software Engineering

Using UML, Patterns, and Java

; iy > v 2o

Overview: modeling with UML

+ What is modeling?
+ What is UML?
+ Use case diagrams
+ Class diagrams
+ Sequence diagrams

What is modeling?

+ Modeling consists of building an abstraction of reality.
+ Abstractions are simplifications because:

+ They ignore irrelevant details and

+ They only represent the relevant details.

+ What is relevant or irrelevant depends on the purpose of the
model.

Bernd Brucqge & Allen H. Dutoit 3

Example: street map

Why model software?
‘Why model software?

+ Software is getting increasingly more complex
+ Windows XP > 40 mio lines of code
+ A single programmer cannot manage this amount of code in its
entirety.
+ Code is not easily understandable by developers who did not
write it
+ We need simpler representations for complex systems
+ Modeling is a mean for dealing with complexity

Bernd Brucgge & Allen H. Dutoit

Systems, Models and Views

+ A model is an abstraction describing a subset of a system

+ A view depicts selected aspects of a model

+ A notation is a set of graphical or textual rules for depicting views
+ Views and models of a single system may overlap each other

Examples:

+ System: Aircraft

+ Models: Flight simulator, scale model

+ Views: All blueprints, electrical wiring, fuel system

Systems, Models and Views

Flightsimulator

Electrical
Wiring

Scale Model

Bernd Brucgee & Allen . Dutot i sing U 7

Models, Views and Systems (UML)

* *
soer F—T wew F—T veu

Descri bed by Depi cted by

Airpgane System

Scal e Modd: Mode [Hight Smiao: Mbdel

B ueprints: iew || Fud System Mew | | Hectricd \iring Vew

: Using UMIL, P s

Concepts and Phenomena

Phenomenon
+ An object in the world of a domain as you perceive it
+ Example: The lecture you are attending
+ Example: My black watch
Concept
+ Describes the properties of ph that are
+ Example: Lectures on software engineering
+ Example: Black watches
Concept is a 3-tuple:
+ Name (To distinguish it from other concepts)

+ Purpose (Properties that determine if a phenomenon is a member of
a concept)

+ Members (The set of ph which are part of the concept)

Berd Bracgge & Allen H. Dutot sing U ’

Concepts and phenomena

Name Purpose Members

A devicethat
measures ti me.

+ Abstraction
+ Classi ion of ph into
+ Modeling

+ Development of abstractions to answer specific questions about a set of
phenomena while ignoring irrelevant details.

ten H. Dutoi b Using UMIL, Paterns, and 3 n

Concepts in software: Type and Instance

+ Type:

+ An abstraction in the context of programming languages

+ Name: int, Purpose: integral number, Members: 0, -1 1 2 -2 ...
+ Instance:

+ Member of a specific type

+ The type of a variable represents all possible instances the
variable can take

The following relationships are similar:
* “type” <—> “instance”

. 1 <> “ph ”
P P

e 1. . sing UML n

Abstract Data Types & Classes

+ Abstract data type

+ Special type whose implementation is hidden Wt ch
from the rest of the system.
+ Class: e

+ An abstraction in the context of object-

oriented languages Set Dat e(d)

encapsulates both state (variables) and

+ Like an abstract data type, a class Zr
behavior (methods)

+ Class Vector Cal cul at or Wt ch

+ Unlike abstract data types, classes can be cal cul ator State

gielfm_etd in terms of other classes using Ent er Cal chbde()
inheritance I nput Nunber (n)

len 1. D Using 2

Application and Solution Domain

+ Application Domain (Requirements Analysis):
+ The environment in which the system is operating

¢ Solution Domain (System Design, Object Design):
+ The available technologies to build the system

Object-oriented modeling

Domain Solution Domain
Application Domain Model U M L Package System Model

TrafficContrd SummaryD spl ay
Traffi cContrdler - Hi ght R anDat abase

What is UML?

¢ UML (Unified Modeling Language)
+ An emerging standard for modeling object-oriented software.

+ Resulted from the convergence of notations from three leading
object-oriented methods:

+ OMT (James Rumbaugh)
+ OOSE (Ivar Jacobson)
+ Booch (Grady Booch)
+ Reference: “The Unified Modeling Language User Guide”,
Addison Wesley, 1999.
+ Supported by several CASE tools
+ Rational ROSE
+ TogetherJ

UML: First Pass

+ You can model 80% of most problems by using about 20 %
UML

+ We teach you those 20%

Using UMIL, Paterns, and 3 1

UML First Pass

+ Use case Diagrams
+ Describe the functional behavior of the system as seen by the user.
+ Class diagrams

+ Describe the static structure of the system: Objects, Attributes,
Associations

+ Sequence diagrams

+ Describe the dynamic behavior between actors and the system and
between objects of the system

+ Statechart diagrams

+ Describe the dynamic behavior of an individual object (essentially a
finite state automaton)

+ Activity Diagrams

+ Model the dynamic behavior of a system, in particular the workflow
(essentially a flowchart)

UML first pass: Use case diagrams

Use case
Wat ch \

ReadTi e \
[B)
Wat chUser Set'Ti me %ch%par%rson

ChangeBattery

Use case diagrams represent the functionality of the system
from user’s point of view

len 1. D Using

UML first pass: Class diagrams

Class diagrams represent the structure of the system

PushButton LCDO sp ay Batter Time

B0k 0 [now
bli nkSeconds()
bli nk M nut es()
bli nkHour ()

stopBi nki ng()
referesh()

UML first pass: Sequence diagram

Message(| pesspuranz) :)

pressButtonsl

—comnit NewTl rre(Lq]

wﬁ ‘

Sequence diagrams represent the behavior as interactions

Using UMIL, P »

UML first pass: Statechart diagrams for objects

with interesting dynamic behavior
State
I%Initial state

But t on1&2Pr essed] [PufTonZFressed]
Bl i nkHour s IncrementHr s

[but tontpressed]
[but t on1&2Pr essed] [but ton2Pr essed]
BlinkMnutes [I nerement M n

[but ton1Pr essed]

byt t on1&2Pr essed] ﬁﬁ [but t on2Pr essed]
L Bli < | ncrenent Sec.

(S“’PEI inking) Cw

Represent behavior as states and transitions

UML Summary

+ UML provides a wide variety of notations for representing
many aspects of software development
+ Powerful, but complex language
+ Can be misused to generate unreadable models
+ Can be misunderstood when using too many exotic features

+ For now we concentrate on a few notations:
+ Functional model: Use case diagram
+ Object model: class diagram

¢ Dynamic model: sequence diagrams, statechart and activity
diagrams

ten H. Dutoi b Using UMIL, Paterns, and 3 2

