
U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-
O

ri
en

te
d

So
ft

w
ar

e
E

ng
in

ee
ri

ng Chapter 1: Introduction

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Outline of Today�s Lecture

♦ Software Track Record
♦ What is Software Engineering
♦ Software Lifecycle
♦ Optional stuff for today

! Why is software complex?
! Dealing with the complexity

" Abstraction
" Decomposition
" Hierarchy

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Software Production has a Poor Track Record
Example: Space Shuttle Software

♦ Cost: $10 Billion, millions of dollars more than planned
♦ Time: 3 years late
♦ Quality: First launch of Columbia was cancelled because of a

synchronization problem with the Shuttle's 5 onboard
computers.
! Error was traced back to a change made 2 years earlier when a

programmer changed a delay factor in an interrupt handler from
50 to 80 milliseconds.

! The likelihood of the error was small enough, that the error caused
no harm during thousands of hours of testing.

♦ Substantial errors still exist.
! Astronauts are supplied with a book of known software problems

"Program Notes and Waivers".

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Quality of today�s software�.

♦ The average software product released on the market is not
error free.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

�has major impact on Users

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Software Engineering: A Problem Solving Activity

♦ Analysis: Understand the nature of the problem and break the
problem into pieces

♦ Synthesis: Put the pieces together into a large structure

For problem solving we use
♦ Techniques (methods):

! Formal procedures for producing results using some well-defined
notation

♦ Methodologies:
! Collection of techniques applied across software development and

unified by a philosophical approach
♦ Tools:

! Instrument or automated systems to accomplish a technique

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7 20

Software Engineering: Definition

Software Engineering is a collection of techniques,
methodologies and tools that help
with the production of

♦ a high quality software system
♦ with a given budget
♦ before a given deadline

while change occurs.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Software Lifecycle Activities

Subsystems

Structured By

class...
class...
class...

Source
Code

Implemented
By

Solution
Domain
Objects

Realized By

System
Design

Object
Design

Implemen-
tation Testing

Application
Domain
Objects

Expressed in
Terms Of

Test
Cases

?

Verified
By

class....?

Requirements
Elicitation

Use Case
Model

Analysis

...and their models

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Rational Unified Process (RUP)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Scientist vs Engineer

♦ Computer Scientist
! Proves theorems about algorithms, designs languages, defines

knowledge representation schemes
! Has infinite time�

♦ Engineer
! Develops a solution for an application-specific problem for a client
! Uses computers & languages, tools, techniques and methods

♦ Software Engineer
! Works in multiple application domains
! Has only 3 months...
! �while changes occurs in requirements and available technology

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Factors affecting the quality of a software system

♦ Complexity:
! The system is so complex that no single programmer can understand it

anymore
! The introduction of one bug fix causes another bug

♦ Change:
! The �Entropy� of a software system increases with each change: Each

implemented change erodes the structure of the system which makes the
next change even more expensive (�Second Law of Software
Dynamics�).

! As time goes on, the cost to implement a change will be too high, and
the system will then be unable to support its intended task. This is true
of all systems, independent of their application domain or technological
base.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Why are software systems so complex?

♦ The problem domain is difficult
♦ The development process is very difficult to manage
♦ Software offers extreme flexibility
♦ Software is a discrete system

! Continuous systems have no hidden surprises (Parnas)
! Discrete systems have!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Dealing with Complexity

1. Abstraction
2. Decomposition
3. Hierarchy

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

What is this?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

1. Abstraction

♦ Inherent human limitation to deal with complexity
! The 7 +- 2 phenomena

♦ Chunking: Group collection of objects
♦ Ignore unessential details: => Models

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Models are used to provide abstractions

♦ System Model:
! Object Model: What is the structure of the system? What are the

objects and how are they related?
! Functional model: What are the functions of the system? How is

data flowing through the system?
! Dynamic model: How does the system react to external events? How

is the event flow in the system ?
♦ Task Model:

! PERT Chart: What are the dependencies between the tasks?
! Schedule: How can this be done within the time limit?
! Org Chart: What are the roles in the project or organization?

♦ Issues Model:
! What are the open and closed issues? What constraints were posed

by the client? What resolutions were made?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Interdependencies of the Models

System Model (Structure,
Functionality,
Dynamic Behavior)

Issue Model
(Proposals,
Arguments,
Resolutions)

Task Model
(Organization,
Activities
Schedule)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

The �Bermuda Triangle� of Modeling

System Models

Issue Model Task Models

PERT Chart
Gantt Chart

Org Chart
Constraints

Issues

Proposals

Arguments

Object Model

Functional
Model

Dynamic Model

class...
class...
class...

Code

Pro Con

Forward
Engineering

Reverse
Engineering

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Model-based software Engineering:
Code is a derivation of object model

Problem Statement : A stock exchange lists many companies.
Each company is identified by a ticker symbol

public class StockExchange
{

public Vector m_Company = new Vector();

};

public class Company
{

public int m_tickerSymbol
public Vector m_StockExchange = new Vector();

};

Implementation phase results in code

Analysis phase results in cbject model (UML Class Diagram):

StockExchange Company

tickerSymbolLists
**

A good software engineer writes as little code as possibleA good software engineer writes as little code as possible

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Example of an Issue: Galileo vs the Church

♦ What is the center of the Universe?

! Church: The earth is the center of the universe. Why? Aristotle says
so.

! Galileo: The sun is the center of the universe. Why? Copernicus
says so. Also, the Jupiter�s moons rotate round Jupiter, not around
Earth.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Issue-Modeling

Issue:
What is the

Center of the
Universe?

Proposal1:
The earth!

Proposal2:
The sun!

Pro:
Copernicus

says so.

Pro:
Aristotle
says so.

Pro:
Change will disturb

the people.

Con:
Jupiter�s moons rotate

around Jupiter, not
around Earth.

Resolution (1615):
The church

decides proposal 1
is right

Resolution (1998):
The church declares

proposal 1 was wrong

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Which decomposition is the right one?

2. Decomposition

♦ A technique used to master complexity (�divide and conquer�)
♦ Functional decomposition

! The system is decomposed into modules
! Each module is a major processing step (function) in the application

domain
! Modules can be decomposed into smaller modules

♦ Object-oriented decomposition
! The system is decomposed into classes (�objects�)
! Each class is a major abstraction in the application domain
! Classes can be decomposed into smaller classes

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Functional Decomposition

Top Level functions

Level 1 functions

Level 2 functions

Machine Instructions

System
Function

Load R10 Add R1, R10

Read Input Transform Produce
Output

Transform Produce
OutputRead Input

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Functional Decomposition

♦ Functionality is spread all over the system
♦ Maintainer must understand the whole system to make a single

change to the system
♦ Consequence:

! Codes are hard to understand
! Code that is complex and impossible to maintain
! User interface is often awkward and non-intuitive

♦ Example: Microsoft Powerpoint�s Autoshapes

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Autoshape

Functional Decomposition: Autoshape

Draw
Rectangle

Draw
Oval

Draw
Circle

DrawChangeMouse
click

Change
Rectangle

Change
Oval

Change
Circle

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

What is This?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Model of an Eskimo
Eskimo

Size
Dress()
Smile()
Sleep()

Shoe
Size

Color
Type

Wear()

*
Coat
Size

Color
Type

Wear()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Iterative Modeling then leads to
Eskimo

Size
Dress()
Smile()
Sleep()

Cave
Lighting
Enter()
Leave()

lives in

but is it the right model?

Entrance*

Outside
Temperature

Light
Season
Hunt()

Organize()

moves
around

Windhole
Diameter

MainEntrance
Size

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

Alternative Model: The Head of an Indian

Indian
Hair

Dress()
Smile()
Sleep()

Mouth
NrOfTeeths
Size
open()
speak()

*Ear
Size
listen()

Face
Nose
smile()
close_eye()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Class Identification

♦ Class identification is crucial to object-oriented modeling
♦ Basic assumption:

1. We can find the classes for a new software system: We call this
Greenfield Engineering

2. We can identify the classes in an existing system: We call this
Reengineering

3. We can create a class-based interface to any system: We call this
Interface Engineering

♦ Why can we do this? Philosophy, science, experimental
evidence

♦ What are the limitations? Depending on the purpose of the
system different objects might be found
! How can we identify the purpose of a system?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

What is this Thing?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Modeling a Briefcase

BriefCase

Capacity: Integer
Weight: Integer

Open()
Close()
Carry()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

A new Use for a Briefcase

BriefCase

Capacity: Integer
Weight: Integer

Open()
Close()
Carry()

SitOnIt()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Questions

♦ Why did we model the thing as �Briefcase�?

♦ Why did we not model it as a chair?
♦ What do we do if the SitOnIt() operation is the most

frequently used operation?
♦ The briefcase is only used for sitting on it. It is never

opened nor closed.
! Is it a �Chair�or a �Briefcase�?

♦ How long shall we live with our modeling mistake?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

3. Hierarchy

♦ We got abstractions and decomposition
! This leads us to chunks (classes, objects) which we view with object

model

♦ Another way to deal with complexity is to provide simple
relationships between the chunks

♦ One of the most important relationships is hierarchy
♦ 2 important hierarchies

! "Part of" hierarchy
! "Is-kind-of" hierarchy

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Part of Hierarchy

Computer

I/O Devices CPU Memory

Cache ALU Program
Counter

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Is-Kind-of Hierarchy (Taxonomy)

Cell

Muscle Cell Blood Cell Nerve Cell

Striate Smooth Red White Cortical Pyramidal

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

So where are we right now?

♦ Three ways to deal with complexity:
! Abstraction
! Decomposition
! Hierarchy

♦ Object-oriented decomposition is a good methodology
! Unfortunately, depending on the purpose of the system, different

objects can be found

♦ How can we do it right?
! Many different possibilities
! Our current approach: Start with a description of the functionality

(Use case model), then proceed to the object model
! This leads us to the software lifecycle

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

Software Lifecycle Definition

♦ Software lifecycle:
! Set of activities and their relationships to each other to support the

development of a software system

♦ Typical Lifecycle questions:
! Which activities should I select for the software project?
! What are the dependencies between activities?
! How should I schedule the activities?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Reusability

♦ A good software design solves a specific problem but is general
enough to address future problems (for example, changing
requirements)

♦ Experts do not solve every problem from first principles
! They reuse solutions that have worked for them in the past

♦ Goal for the software engineer:
! Design the software to be reusable across application domains and

designs

♦ How?
! Use design patterns and frameworks whenever possible

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

Design Patterns and Frameworks

♦ Design Pattern:
! A small set of classes that provide a template solution to a recurring

design problem
! Reusable design knowledge on a higher level than datastructures

(link lists, binary trees, etc)

♦ Framework:
! A moderately large set of classes that collaborate to carry out a set

of responsibilities in an application domain.
" Examples: User Interface Builder

♦ Provide architectural guidance during the design phase
♦ Provide a foundation for software components industry

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

Patterns are used by many people

♦ Chess Master:
! Openings
! Middle games
! End games

♦ Writer
! Tragically Flawed Hero

(Macbeth, Hamlet)
! Romantic Novel
! User Manual

♦ Architect
! Office Building
! Commercial Building
! Private Home

♦ Software Engineer
! Composite Pattern: A collection

of objects needs to be treated
like a single object

! Adapter Pattern (Wrapper):
Interface to an existing system

! Bridge Pattern: Interface to an
existing system, but allow it to
be extensible

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43

Summary

♦ Software engineering is a problem solving activity
! Developing quality software for a complex problem within a limited

time while things are changing
♦ There are many ways to deal with complexity

! Modeling, decomposition, abstraction, hierarchy
! Issue models: Show the negotiation aspects
! System models: Show the technical aspects
! Task models: Show the project management aspects
! Use Patterns: Reduce complexity even further

♦ Many ways to do deal with change
! Tailor the software lifecycle to deal with changing project

conditions
! Use a nonlinear software lifecycle to deal with changing

requirements or changing technology
! Provide configuration management to deal with changing entities

