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Abstract. The novel Time Series Data Mining (TSDM) framework is applied to 
analyzing financial time series. The TSDM framework adapts and innovates 
data mining concepts to analyzing time series data. In particular, it creates a set 
of methods that reveal hidden temporal patterns that are characteristic and pre-
dictive of time series events. This contrasts with other time series analysis tech-
niques, which typically characterize and predict all observations. The TSDM 
framework and concepts are reviewed, and the applicable TSDM method is dis-
cussed. Finally, the TSDM method is applied to time series generated by a bas-
ket of financial securities. The results show that statistically significant tempo-
ral patterns that are both characteristic and predictive of events in financial time 
series can be identified. 

1 Introduction 

The Time Series Data Mining (TSDM) framework [1-4] is applied to the prediction of 
financial time series. TSDM-based methods can successfully characterize and predict 
complex, nonperiodic, irregular, and chaotic time series. The TSDM methods over-
come limitations (including stationarity and linearity requirements) of traditional time 
series analysis techniques by adapting data mining concepts for analyzing time series. 

A time series is �a sequence of observed data, usually ordered in time� [5, p. 1]. 
Fig. 1 shows an example time series { }, 1, ,tX x t N= = � , where t is a time index, 
and 126N =  is the number of observations. Time series analysis is fundamental to 
engineering, scientific, and business endeavors, such as the prediction of welding 
droplet releases and stock market price fluctuations [1, 2, 4]. 

This paper, which is divided into four sections, presents the results of applying the 
TSDM framework to the problem of finding a trading-edge, i.e., a small, but signifi-
cant, advantage that allows greater than expected returns to be realized. The first sec-
tion presents the problem and reviews other time series analysis techniques. The sec-
ond section introduces the key TSDM concepts and method. The third section pre-
sents the prediction results. The fourth section discusses the results and proposes fu-
ture work. 



 

Fig. 1 � Stock Daily Open Price Time Series 

1.1 Problem Statement 

The predominant theory for describing the price behavior of a financial security is the 
efficient market hypothesis, which is explained using the expected return or fair game 
model [6, p. 210]. The expected value of a security is 

( ) ( )( )1 11t t t t tE P E r P+ +Φ = + Φ  [6, p. 210], where tP  is the price of a security at 
time t, 1tr +  is the one-period percent rate of return for the security during period t+1, 
and tΦ  is the information assumed to be fully reflected in the security price at time t. 

The three forms of the efficient market hypothesis are weak, semistrong, and 
strong. The weak form, which is relevant to this work, assumes tΦ  is all security-
market information, such as historical sequence of price, rates of return, and trading 
volume data [6, p. 211]. 

The weak form of the efficient market hypothesis has been supported in the litera-
ture [6, p. 213-215]. The efficient market hypothesis has been verified by showing that 
security price time series show no autocorrelation and are random according to the 
runs test. In addition, tests of trading rules have generally shown that the weak form of 
the efficient market hypothesis holds [6, p. 213-215]. 

The problem is to find a trading-edge, which is a small advantage that allows 
greater than expected returns to be realized. If the weak form of the efficient market 
hypothesis holds, the TSDM method should not be able to find hidden patterns that 
can be exploited to achieve such a trading-edge. 

Fig. 1 illustrates the problem, where the horizontal axis represents time, and the 
vertical axis observations. The diamonds show the open price of a stock. The results 
of a successful prediction technique are illustrated by the black squares, which indi-
cate buying opportunities. If the stock were purchased on those days and sold the next 
day, a greater than 5% return would be realized for each buy-sell sequence. 

To summarize, the problem is to find hidden patterns that are, on average, charac-
teristic and predictive of a larger than normal increase in the price of a stock and to 
use these hidden patterns in a trading strategy. 
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1.2 Review of Time Series Analysis Techniques 

The analysis of financial time series has a long history. This review will briefly touch 
on some of the many time series analysis techniques that may be applied to predicting 
stock prices, including ARIMA, machine learning, genetic programming, neural net-
work, and various data mining methods. 

Some of the first applications of the traditional Box-Jenkins or Autoregressive In-
tegrated Moving Average (ARIMA) method was to the analysis of the IBM stock time 
series [5]. The ARIMA techniques provide a comprehensive approach for analyzing 
stationary time series whose residuals are normal and independent [5]. For real-world 
time series such as stock market prices, the conditions of time series stationarity and 
residual normality and independence are not met. Another drawback of the ARIMA 
approach is its inability to identify complex hidden characteristics. This limitation 
occurs because of the goal of characterizing all time series observations. 

For stock time series, the typical AR(1) model is 1t t tx x a−= +  [5, pp. 30-31], i.e., 
the expected next value in the time series is the current value. This model does not 
help in making trading decisions. 

An example of applying machine learning techniques is provided by the work of 
Zemke, who uses a bagging approach to combine predictions made by an artificial 
neural network, a nearest neighbor method, and an evolved logic program to predict 
various stock indices [7]. Zemke is able to achieve an average daily excess return of 
0.15% more than a random trading strategy. 

Kaboudan uses a genetic programming approach to learn the nonlinear generating 
function to predict stock time series [8]. He develops a trading strategy that is tested 
against six stocks. Kaboudan is able to achieve an average daily excess return of 
0.45% more than a naïve trading approach. 

Berndt and Clifford [9], Keogh [10-12], Rosenstein and Cohen [13], and Guralnik 
et al. [14] are among those who have applied data mining concepts to finding patterns 
in time series. Data Mining [15, 16] is the analysis of data with the goal of uncovering 
hidden patterns. It encompasses a set of methods that automate the scientific discovery 
process. Its uniqueness is found in the types of problems addressed � those with large 
data sets and complex, hidden relationships.  Data mining evolved from several fields, 
including machine learning, statistics, and database design [16]. It uses techniques 
such as clustering, association rules, visualization, decision trees, nonlinear regression, 
and probabilistic graphical dependency models to identify novel, hidden, and useful 
structures in large databases [15, 16]. 

Berndt and Clifford use a dynamic time warping technique taken from speech rec-
ognition. Their approach uses a dynamic programming method for aligning the time 
series and a predefined set of templates. 

Rosenstein and Cohen [13] also use a predefined set of templates to match a time 
series generated from robot sensors. Instead of using the dynamic programming meth-
ods as in [9], they employ the time-delay embedding process to match their predefined 
templates. 

Similarly, Keogh represents the templates using piecewise linear segmentations. 
�Local features such as peaks, troughs, and plateaus are defined using a prior distribu-



 

tion on expected deformations from a basic template� [10]. Keogh�s approach uses a 
probabilistic method for matching the known templates to the time series data. 

Guralnik et al. [14] have developed a language for describing temporal patterns 
(episodes) in sequence data. They have developed an efficient sequential pattern tree 
for identifying frequent episodes. Their work, like that of others discussed here, fo-
cuses on quickly finding patterns that match predefined templates. 

The novel TSDM framework, initially introduced by Povinelli and Feng in [1], dif-
fers fundamentally from both data mining and other time series approaches. The 
TSDM framework differs from most time series analysis techniques by focusing on 
discovering hidden temporal patterns that are predictive of events, which are impor-
tant occurrences, rather than trying to predict all observations. This allows the TSDM 
methods to predict nonstationary, nonperiodic, irregular time series, including chaotic 
deterministic time series. The TSDM methods are applicable to time series that appear 
stochastic, but occasionally (though not necessarily periodically) contain distinct, but 
possibly hidden, patterns that are characteristic of the desired events. 

The data mining approaches advanced in [9-14] require a priori knowledge of the 
types of structures or temporal patterns to be discovered. These approaches represent 
temporal patterns as a set of templates. The use of predefined templates in [9-14] 
prevents the achievement of the basic data mining goal of discovering useful, novel, 
and hidden temporal patterns. The TSDM framework is not restricted by the use of 
predefined templates. 

The novel TSDM framework creates a new structure for analyzing time series by 
adapting concepts from data mining [15, 16]; time series analysis [5, 17, 18]; genetic 
algorithms [19-21]; and chaos, nonlinear dynamics, and dynamical systems [22-25]. 
From data mining comes the focus on discovering hidden patterns. From time series 
analysis comes the theory for analyzing linear, stationary time series. In the end, the 
limitations of traditional time series analysis suggest the possibility of new methods. 
From genetic algorithms comes a robust and easily applied optimization method [19]. 
From the study of chaos, nonlinear dynamics, and dynamical systems comes the theo-
retical justification of the TSDM methods, specifically Takens� Theorem [26] and 
Sauer's extension [27]. 

2 Some Time Series Data Mining Concepts 

Previous work [1, 2, 4] presented the TSDM framework. In this section, the funda-
mental TSDM concepts such as events, temporal patterns, event characterization func-
tion, temporal pattern cluster, time-delay embedding, phase space, augmented phase 
space, objective function, and optimization are defined and explained as is the TSDM 
method for identifying temporal pattern clusters. 

The TSDM method discussed here discovers hidden temporal patterns (vectors of 
length Q) characteristic of events (important occurrences) by time-delay embedding 
[22, 25] an observed time series X into a reconstructed phase space, here simply called 
phase space. An event characterization function g is used to represent the eventness of 
a temporal pattern. An augmented phase space is formed by extending the phase space 



 

with g. The augmented phase space is searched for a temporal pattern cluster P that 
best characterizes the desired events. The temporal pattern clusters are then used to 
predict events in a testing time series. 

2.1 Events, Temporal Pattern, and Temporal Pattern Cluster 

In a time series, an event is an important occurrence. The definition of an event is 
dependent on the TSDM goal. For example, an event may be defined as the sharp rise 
or fall of a stock price. Let { }, 1, ,126tX x t= = �  be the daily open price of a stock 
for a six-month period as illustrated by Fig. 1. The events, highlighted as squares in 
Fig. 1, are those days when the price increases more than 5%. 

A temporal pattern is a hidden structure in a time series that is characteristic and 
predictive of events. The temporal pattern p is a real vector of length Q. The temporal 
pattern is represented as a point in a Q dimensional real metric space, i.e., Q∈p � . 

Because a temporal pattern may not perfectly match the time series observations 
that precede events, a temporal pattern cluster is defined as the set of all points within 
δ of the temporal pattern. The temporal pattern cluster ( ){ }: ,QP a d a δ= ∈ ≤p� , 
where d is the distance or metric defined on the space. This defines a hypersphere of 
dimension Q, radius δ, and center p. 

The observations ( ){ }21 , , , ,t t tt Qx x x xτ ττ − −− − �  form a sequence that can be com-
pared to a temporal pattern, where tx  represents the current observation, and 

( ) 21 , , ,t tt Qx x xτ ττ − −− − �  past observations. Let 0τ >  be a positive integer. If t repre-
sents the present time index, then t τ−  is a time index in the past, and t τ+  is a time 
index in the future. Using this notation, time is partitioned into three categories: past, 
present, and future. Temporal patterns and events are placed into different time cate-
gories. Temporal patterns occur in the past and complete in the present. Events occur 
in the future. 

2.2 Phase Space and Time-Delay Embedding 

A reconstructed phase space [22] is a Q-dimensional metric space into which a time 
series is embedded. Takens showed that if Q is large enough, the phase space is ho-
meomorphic to the state space that generated the time series [26]. The time-delayed 
embedding of a time series maps a set of Q time series observations taken from X onto 

tx , where tx  is a vector or point in the phase space. Specifically, 
( )( )21 , , , , T

t t t tt Qx x x xτ ττ − −− −=x � . 

2.3 Event Characterization Function 

To link a temporal pattern (past and present) with an event (future) the event charac-
terization function g(t) is introduced. The event characterization function represents 
the value of future �eventness� for the current time index. It is, to use an analogy, a 
measure of how much gold is at the end of the rainbow (temporal pattern). The event 



 

characterization function is defined a priori and is created to address the specific 
TSDM goal. The event characterization function is defined such that its value at t 
correlates highly with the occurrence of an event at some specified time in the future, 
i.e., the event characterization function is causal when applying the TSDM method to 
prediction problems. Non-causal event characterization functions are useful when 
applying the TSDM method to system identification problems. 

In Fig. 1, the goal is to decide if the stock should be purchased today and sold to-
morrow. The event characterization function that achieves this goal is 

( ) ( )1t t tg t x x x+= − , which assigns the percentage change in the stock price for the 
next day to the current time index. Alternatively the time series maybe filtered, 
thereby simplifying the event characterization function. 

2.4 Augmented Phase Space 

The concept of an augmented phase space follows from the definitions of the event 
characterization function and the phase space. The augmented phase space is a Q+1 
dimensional space formed by extending the phase space with ( )g ⋅  as the extra di-
mension. Every augmented phase space point is a vector 1, ( ) Q

t g t +< >∈x � . 
Fig. 2, a stem-and-leaf plot, shows the augmented phase space for the daily return 

time series generated from the open price time series illustrated in Fig. 1. The height 
of the leaf represents the significance of ( )g ⋅  for that time index. 

 

Fig. 2 � Stock Daily Return Augmented Phase Space 

2.5 Objective Function 

The TSDM objective function represents the efficacy of a temporal pattern cluster to 
characterize events. The objective function f maps a temporal pattern cluster P onto 
the real line, which provides an ordering to temporal pattern clusters according to their 
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ability to characterize events. The objective function is constructed in such a manner 
that its optimizer *P  meets the TSDM goal. 

The form of the objective functions is application dependent, and several different 
objective functions may achieve the same goal. Before presenting an example objec-
tive function, several definitions are required. 

The index set ( ){ }: 1 1, ,t t Q NτΛ = = − + � , where ( )1Q τ−  is the largest em-
bedding time-delay, and N is the number of observations in the time series, is the set 
of all time indices t of phase space points. The index set M is the set of all time indices 
t when xt is within the temporal pattern cluster, i.e. { }: ,tM t P t= ∈ ∈ Λx . 

The average value of g, also called the average eventness, of the phase space points 
within the temporal pattern cluster P is 

( ) ( )1
M

t M
g t

c M
µ

∈
= � ,  

where ( )c M  is the cardinality of M.  
The following objective function orders temporal pattern clusters according to their 

ability to characterize time series observations with high eventness and characterize at 
least a minimum number of events. The objective function 

 ( )
( ) ( )

( ) ( )
( )0 0

if

-   otherwise

M

M

c M c
f P c M

g g
c

µ β

µ
β

Λ ≥�
�= � +� Λ�

, (1) 

where β  is the desired minimum percentage cardinality of the temporal pattern clus-
ter, and 0g  is the minimum eventness of the phase space points, i.e. 

( ){ }0 min :g g t t= ∈ Λ . 
The parameter β in the linear barrier function in (1) is chosen so that ( )*c M  is 

non-trivial, i.e., the neighborhood around p includes some percentage of the total 
phase space points. If 0β = , then ( )* 1c M =  or ( ) ( ) *,g i g j i j M= ∀ ∈ , i.e., the 
eventness value of all points in the temporal pattern cluster are identical. If 0β = , the 
temporal pattern cluster will be maximal when it contains only one point in the phase 
space � the point with the highest eventness. If there are many points with the highest 
eventness, the optimal temporal pattern cluster may contain several of these points. 
When 0β = , (1) is still defined, because ( ) ( ) 0c M c Λ ≥  is always true. 

2.6 Optimization 

The key to the TSDM framework is finding optimal temporal pattern clusters that 
characterize and predict events. Thus, an optimization algorithm to maximize ( )f P  
over p and δ is necessary. A modified simple GA (sGA) [19] composed of a Monte 
Carlo initialization, roulette selection, and random locus crossover is used for finding 

*P . The Monte Carlo search generates the initial population for the sGA.  Although a 
mutation operator is typically incorporated into an sGA, it is not used for discovering 
the results presented in this paper.  The sGA uses a binary chromosome with gene 



 

lengths of six and single individual elitism. The stopping criterion for the GA is con-
vergence of all fitness values. The population size is 30 and the Monte Carlo search 
size is 300. A hashing technique is employed to improve computational performance 
[28]. 

2.7 Time Series Data Mining Method 

The first step in applying the TSDM method is to define the TSDM goal, which is 
specific to each application, but may be stated generally as follows. Given an ob-
served time series { }, 1, ,tX x t N= = � , the goal is to find hidden temporal patterns 
that are characteristic of events in X, where events are specified in the context of the 
problem. Likewise, given a testing time series { }, , ,tY x t R S N R S= = < <� , the 
goal is to use the hidden temporal patterns discovered in X to predict events in Y. 
 

Fig. 3 � Block Diagram of TSDM Method 

Given a TSDM goal, an observed time series to be characterized, and a testing time 
series to be predicted, the steps in the TSDM method are: 

Training Stage (Batch Process) 
1. Frame the TSDM goal in terms of the event characterization function, ob-

jective function, and optimization formulation. 
a. Define the event characterization function g. 
b. Define the objective function f. 
c. Define the optimization formulation, including the independent vari-

ables over which the value of the objective function will be optimized 
and the constraints on the objective function. 

2. Determine Q, i.e., the dimension of the phase space and the length of the 
temporal pattern. 

3. Transform the observed time series into the phase space using the time-
delayed embedding process. 
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4. Associate with each time index in the phase space, an eventness represented 
by the event characterization function. Form the augmented phase space. 

5. In the augmented phase space, search for the optimal temporal pattern clus-
ter, which best characterizes the events. 

6. Evaluate training stage results. Repeat training stage as necessary. 
Testing Stage (Real Time or Batch Process) 

1. Embed the testing time series into the phase space. 
2. Use the optimal temporal pattern cluster for predicting events. 
3. Evaluate testing stage results. 

3 Financial Applications of Time Series Data Mining 

This section presents significant results found by applying the Time Series Data Min-
ing (TSDM) method to a basket of financial time series. The time series are created by 
the dynamic interaction of millions of investors buying and selling securities through a 
secondary equity market such as the New York Stock Exchange (NYSE) or National 
Association of Securities Dealers Automated Quotation (NASDAQ) market [6]. The 
times series are measurements of the activity of a security, specifically a stock.  

The goal is to find a trading-edge, a small advantage that allows greater than ex-
pected returns to be realized. If the weak form of the efficient market hypothesis 
holds, the TSDM method should not be able to find temporal patterns that can be 
exploited to achieve such a trading-edge. The TSDM goal is to find temporal pattern 
clusters that are, on average, characteristic and predictive of a larger than normal 
increase in the price of a stock. 

Two sets of time series are analyzed. The first set of time series are the inter-day re-
turns for the 30 Dow Jones Industrial Average (DJIA) components from January 2, 
1990 through March 8, 1991. This time period allows for approximately 200 testing 
stages. The inter-day return ( )1t t t tr o o o+= − , where to is the daily open price, 
which is the price of the first trade. Detailed results for this set of time series are pro-
vided. 

The second set of time series are the intra-day returns for the 30 DJIA components 
from October 16, 1998 through December 22, 1999. Again, this time period allows for 
approximately 200 testing stages. The intra-day return ( )t t t tr c o o= − , where to is 
the daily open price and tc  is the daily closing price, which is the price of the last 
trade. Summary results are provided for this set of time series. 

Fig. 4 illustrates the DJIA during the first time period. 



 

Fig. 4 � DJIA Daily Open Price Time Series 

3.1 Training Stage 

The TSDM method, illustrated in Fig. 4, is applied 198 times to each of the DJIA 
component time series for a total of 5,940 training stages for each set of time series. 
The 198 observed time series are formed from a moving window of length 100. The 
testing time series is a single observation. The parameters of the method are: 

• The event characterization function ( ) 1tg t x += , which allows for one-step-
ahead characterization and prediction. 

• The objective function (1) with a 0.05β =  is used. 
• The optimization formulation is ( )max f P . 
• The dimension of the phase space 2Q = . 
The statistical training results for each DJIA component are presented in Table 1. 

Of the 5,940 training processes, the cluster mean eventness ( Mµ ) was greater than 
total mean eventness ( Xµ ) every time. For 69% of the temporal pattern clusters, the 
probability of a Type I error (α) was less than 5% based on the independent means 
statistical test. 

Table 1 � DJIA Component Results, January 2, 1990, through March 8, 1991 (Observed) 

Ticker M Xµ µ>  α ≤ 0.05 
AA 100% 82% 
ALD 100% 72% 
AXP 100% 71% 
BA 100% 70% 
CAT 100% 79% 
CHV 100% 54% 
DD 100% 42% 
DIS 100% 83% 
EK 100% 55% 
GE 100% 66% 
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Ticker M Xµ µ>  α ≤ 0.05 
GM 100% 73% 
GT 100% 62% 
HWP 100% 55% 
IBM 100% 67% 
IP 100% 80% 
JNJ 100% 89% 
JPM 100% 90% 
KO 100% 67% 
MCD 100% 62% 
MMM 100% 57% 
MO 100% 65% 
MRK 100% 59% 
PG 100% 76% 
S 100% 59% 
T 100% 66% 
TRV 100% 78% 
UK 100% 36% 
UTX 100% 94% 
WMT 100% 73% 
XON 100% 75% 
Combined 100% 69% 

3.2 Testing Stage 

Using the 5,940 training processes, 471 events are predicted for the January 2, 1990 
through March 8, 1991 time series. The statistical prediction results for each DJIA 
component are presented in Table 2. The cluster mean eventness ( Mµ ) was greater 
than the non-cluster mean eventness ( Mµ � ) 20 out of 30 times or 67% of the time. For 
16.7% of the temporal pattern clusters, the probability of a Type I error was less than 
5% based on the independent means statistical test. These low rates of statistical sig-
nificance at the 5% α  level are typical for predictions of financial time series [1, 2]. 

Table 2 � DJIA Component Results, January 2, 1990, through March 8, 1991 (Testing) 

Ticker c(M) Mµ  σM ( )c M�  Mµ �  σM� αm 
AA 16 0.569% 1.652% 182 -0.013% 1.620% 1.78x10-1 
ALD 14 0.438% 1.428% 184 -0.102% 1.851% 1.83x10-1 
AXP 14 0.027% 2.058% 184 -0.023% 2.610% 9.32x10-1 
BA 13 0.080% 2.044% 185 -0.030% 2.181% 8.52x10-1 
CAT 26 -0.003% 1.817% 172 -0.098% 2.127% 8.08x10-1 
CHV 16 0.057% 1.572% 182 0.061% 1.200% 9.92x10-1 
DD 16 0.526% 1.946% 182 -0.045% 1.635% 2.55x10-1 
DIS 20 -0.024% 1.488% 178 0.069% 2.069% 8.00x10-1 



 

Ticker c(M) Mµ  σM ( )c M�  Mµ �  σM� αm 
EK 14 -0.045% 1.879% 184 0.074% 1.998% 8.20x10-1 
GE 16 0.094% 1.410% 182 0.000% 1.881% 8.04x10-1 
GM 16 0.671% 2.090% 182 -0.149% 1.863% 1.29x10-1 
GT 20 -0.962% 2.034% 178 -0.066% 2.549% 6.93x10-2 
HWP 13 -0.779% 1.881% 185 0.116% 2.664% 1.08x10-1 
IBM 16 -1.079% 1.785% 182 0.175% 1.460% 6.32x10-3 
IP 16 1.197% 2.525% 182 0.025% 1.587% 6.80x10-2 
JNJ 13 0.665% 1.444% 185 0.160% 1.551% 2.25x10-1 
JPM 11 1.420% 1.878% 187 0.040% 1.985% 1.82x10-2 
KO 11 1.794% 3.396% 187 0.008% 1.807% 8.36x10-2 
MCD 13 0.367% 1.753% 185 -0.013% 1.977% 4.54x10-1 
MMM 16 0.238% 1.044% 182 0.043% 1.258% 4.82x10-1 
MO 17 0.038% 1.820% 181 0.251% 1.641% 6.42x10-1 
MRK 19 0.669% 1.163% 179 0.073% 1.580% 4.11x10-2 
PG 13 0.174% 1.615% 185 0.047% 1.707% 7.85x10-1 
S 14 1.449% 2.677% 184 -0.157% 1.938% 2.77x10-2 
T 11 1.307% 1.797% 187 -0.193% 1.645% 6.88x10-3 
TRV 21 1.531% 2.449% 177 -0.147% 2.617% 3.21x10-3 
UK 14 -0.449% 2.263% 184 0.041% 1.900% 4.30x10-1 
UTX 14 -0.289% 1.979% 184 -0.028% 1.828% 6.33x10-1 
WMT 18 0.658% 1.950% 180 0.120% 2.458% 2.77x10-1 
XON 20 0.077% 1.398% 178 0.090% 1.263% 9.68x10-1 
All 471 0.313% 1.970% 5,469 0.011% 1.919% 1.38x10-3 

 
For the combined results � using all predictions � the mean cluster eventness is 

greater than the non-cluster mean eventness. It also is statistically significant to the 
0.005α level according to the independent means test. 

The best way to understand the effectiveness of the TSDM method when applied to 
financial time series is to show the trading results that can be achieved by applying the 
temporal pattern clusters discovered above. An initial investment is made as follows: 
If a temporal pattern cluster from any of the stocks in the portfolio predicts a high 
eventness, the initial investment is made in that stock for one day. If there are tempo-
ral pattern clusters for several stocks that indicate high eventness, the initial invest-
ment is split equally among the stocks. If there are no temporal pattern clusters indi-
cating high eventness, then the initial investment is invested in a money market ac-
count with an assumed 5% annual rate of return. The training process is rerun using 
the new 100 most recent observation window. The following day, the initial invest-
ment principal plus return is invested according to the same rules. The process is re-
peated for the remaining investment period. 

The results for the investment period of May 29, 1990 through March 8, 1991 are 
shown in Table 3. This period is shorter than the total time frame (January 1, 1990 
through March 8, 1991) because the first part of the time series is used only for train-
ing. The return of the DJIA also is given, which is slightly different from the buy and 



 

hold strategy for all DJIA components because the DJIA has a non-equal weighting 
among its components. 

Table 3 � Trading Results, May 29, 1990 through March 8, 1991 

Portfolio Investment Method Return 
Annualized 
Return 

All DJIA components Temporal Pattern Cluster 30.98% 41.18% 
DJIA Buy and Hold 2.95% 3.79% 
All DJIA components Not in Temporal Pattern Cluster 0.35% 0.45% 
All DJIA components Buy and Hold 3.34% 4.29% 

 
The results for the investment period of March 15, 1999 through December 22, 

1999 are shown in Table 4. Again, this period is shorter than the total time frame 
(October 16, 1998 through December 22, 1999) because the first part of the time 
series is used only for training. The return of the DJIA varies significantly from the 
buy and hold strategy for all DJIA components not only because the DJIA has a non-
equal weighting among its components, but more importantly because intra-day return 
time series are used. The results for this set of time series is less significant than the 
previous with an α = 0.12. 

Table 4 � Trading Results, March 15, 1999 through December 22, 1999 

Portfolio Investment Method Return 
Annualized 

Return 
All DJIA components Temporal Pattern Cluster 22.70% 29.88% 
DJIA Buy and Hold 13.39% 17.42% 
All DJIA components Not in Temporal Pattern Cluster -10.92% -13.74% 
All DJIA components Buy and Hold -8.26% -10.43% 
 
An initial investment of $10,000 made on May 29, 1990 in the 30 DJIA component 

stocks using the TSDM method would have grown to $13,098 at the end of March 8, 
1991. The maximum draw down, the largest loss during the investment period, is 
9.65%. An initial investment of $10,000 made on March 15, 1999 using the TSDM 
method would have grown to $12,700 at the end of December 22, 1999 with a maxi-
mum draw down of 10.2%. One caveat to this result is that it ignores trading costs 
[29]. The trading cost is a percentage of the amount invested and includes both the 
buying and selling transaction costs along with the spread between the bid and ask, 
where the bid is the offer price for buying and the ask is the offer price for selling. The 
trading cost in percentage terms would need to be kept in the 0.02% range. This level 
of trading cost would require investments in the $500,000 to $1,000,000 range and 
access to trading systems that execute in between the bid and ask prices or have 
spreads of 1/16th or less. 



 

4 Conclusions and Future Work 

Through the novel Time Series Data Mining (TSDM) framework and its associated 
method, this paper has made an original contribution to the fields of time series analy-
sis and data mining. The key TSDM concepts of event, event characterization func-
tion, temporal pattern, temporal pattern cluster, time-delay embedding, phase space, 
augmented phase space, objective function, and optimization were reviewed, setting 
up the framework from which to develop TSDM methods. 

The TSDM method was successfully applied to characterizing and predicting com-
plex, nonstationary time series events from the financial domain. In the financial do-
main, it was able to generate a trading-edge. 

Future research efforts will involve the direct comparison over the same time peri-
ods of the TSDM method present here with the techniques proposed by Zemke [7] and 
Kaboudan [8]. Additional comparisons with Hidden Markov Model techniques also 
will be investigated. A detailed study of the risk-return characteristics of these various 
methods will be undertaken. 

Additionally, new time series predictability metrics will be created that specifically 
address the event nature of the TSDM framework. This research direction will study 
the characteristics of time series that allow for the successful application of the TSDM 
framework. 
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