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Abstract—This paper presents a novel detrending algorithm that 
allows long-term natural gas demand signals to be used effect-
ively to generate high quality short-term natural gas demand 
forecasting models. Short data sets in natural gas forecasting 
inadequately represent the range of consumption patterns 
necessary for accurate short-term forecasting. In contrast, 
longer data sets present a wide range of customer character-
istics, but their long-term historical trends must be adjusted to 
resemble recent data before models can be developed. Our 
approach detrends historical natural gas data using domain 
knowledge. Forecasting models trained on data detrended using 
our algorithm are more accurate than models trained using non-
detrended data or data detrended by benchmark methods. 
Forecasting accuracy improves using detrended longer-term 
signals, while forecast accuracy decreases using non-detrended 
long-term signals. 

Index Terms – Energy forecasting, Detrending, Natural gas 
industry, Industrial applications, Multiple linear regression, 
Short-term demand forecasting 

I. INTRODUCTION 
This paper presents a novel detrending algorithm for 

natural gas demand signals. We show that detrended long-
term natural demand signals yield better short-term fore-
casting models than either models trained on non-detrended 
long term natural gas demand signals or models trained on 
benchmark detrended signals. 

Natural gas use is increasing rapidly in the field of electric 
power generation, space heating, and transportation because of 
relatively low cost and environmental benefits from its low 
emissions. According to the American Gas Association [1] 
and the U.S. Energy Information Administration [2], about 58 
million American homes use natural gas for its comfort, 
cleanliness, and reliability. To furnish uninterrupted services, 
Local Distribution Companies (LDCs) that deliver natural gas 
to end consumers must provide demand forecasts to pipeline 
companies so they, in turn, can have adequate gas available to 
meet LDC needs [3], [4]. Cases of under- and over-forecasting 
can have significant economic implications for LDCs and for 
their customers through increased billings [3], [5].  

To run operations economically and safely, LDCs need to 
forecast with high accuracy customer consumption for the 
next day and several days beyond. Often, long-term daily his-
torical data are preferred for building daily gas consumption 
forecasting models, as these longer data sets capture a greater 
range of consumption patterns. For instance, natural gas con-
sumption is expected to be high on cold days and to deviate 
from normal patterns on unusual days such as holidays and 
days on which cold and warm fronts pass. When training gas 
forecasting models, a rich set of unusual days in the training 
set is crucial for calibrating the forecasting model to such 
days. However, such long-run data also run the risk of 
misrepresenting consumption patterns of the current customer 
base as customer count, customer equipment, consumption 
behaviors, efficiency improvements, economic impacts, price, 
and other factors may vary with time. Paradoxically, building 
forecasting models using long historical data often leads to 
biased forecasts. 

Two methods to account for the non-stationarity of the 
historical data when building a forecast model are 1) include 
variables in the model that represent the trends (detrend the 
model) and 2) detrend the historical data.  In this paper, we 
show short-term natural gas demand forecasting models built 
on detrended historical data using the our algorithm are sup-
erior to model detrending methods. 

Data detrending techniques adjust a historical series so that 
it can approximate a stationary customer base whose con-
sumption patterns reflect current behavior, but whose 
responses to unusual weather and holiday patterns reflect 
several years of history. Numerous studies have demonstrated 
that such detrending techniques improve forecast accuracy [4], 
[6]-[8]. To illustrate, suppose a forecasting model is developed 
using daily natural gas consumption data from the most recent 
five years for a gas territory with substantial, approximately 
linear growth. If all days in this model’s training period are 
equally weighted, the resulting model best predicts the load 
for the average customer base in the training period. Residual 
errors of the model are smallest for the middle year, positive 
(forecasts greater than actual consumption) over the first two 
years of the training period, and negative (forecasts lower than 
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actual consumption) over the last two years. Contrary to the 
goal of building a model to predict consumption for the forth-
coming heating season, such a model best fits data for the 
heating season three years prior. By detrending consumption 
data, the resulting model forecasts the forthcoming heating 
season with reduced error as the residual for the first, middle, 
and last years will be closer to uniform.  

Standard detrending models, however, work poorly in the 
natural gas domain, as these models overlook critical domain 
knowledge that captures nonlinear dynamics of gas consump-
tion. To address this limitation, this study describes a five-
parameter detrending algorithm based on natural gas domain 
knowledge. For benchmark comparison, we also use two well-
accepted detrending techniques derived from best practices. 
Gas consumption series are detrended using these three tech-
niques. These detrended training series then are used to fore-
cast a one year test series using multiple linear regression. The 
forecast accuracy of these detrended series is compared with 
those for non-detrended series. After an overview of the 
natural gas forecasting domain, the paper proceeds to describe 
the five-parameter detrending algorithm and its validation. 

II. BACKGROUND AND MOTIVATION 
Natural gas consumption is influenced by factors such as 

temperature, wind, day of the week, and holidays [4], [9]-[13]. 
Temperature is the most important variable, since natural gas 
primarily is used for space heating by residential and com-
mercial consumers [9], [12]. Gas consumption, often 
measured using decatherms (Dth), increases with declining 
average temperature. However, as temperature increases 
beyond about 65°F, consumption levels off near some con-
stant value called base load. Base load captures consumption 
driven by non-heating needs. Figure 1 juxtaposes typical daily 
average temperature and the daily gas consumption of a region 
for a U.S. utility. 

Figure 1.  Wind adjusted daily average temperature and daily gas load. 

This nonlinear relationship between consumption and tem-
perature has been useful in identifying the most important 
variable in gas consumption forecasting, the heating degree 
day (HDD) [4], [9], [15]-[17]. 

 max( , 0)k ref kHDD T T  , (1)  

where Tk is the average temperature for the kth day, and Tref  is 
the reference temperature, historically set to 65°F. HDD is a 

simple metric for quantifying the amount of heating needed 
for a particular customer during a certain period, in this study, 
for one day. We also adjust temperatures to account for wind 
effects. Wind creates the “wind chill effect” and also causes 
buildings to lose heat faster [4]. 

A detrending adjustment is a widely used technique in 
time series analysis of non-stationary data sets [18], [19]. In 
their respective domains, these studies demonstrated that the 
problem of short series can be alleviated by detrending long 
historical data sets, driving gains in forecast accuracy. These 
long series benefit models by deriving trends in customers’ 
characteristics, yielding unbiased forecasts.  

A range of time series detrending methods has appeared in 
the forecasting literature. The simplest approach is to use a 
linear detrending regression factor as done by Gujarati [20], 
Nelson and Kang [21], South [22], Kaun [23], and Raffalovich  
[24]. Despite its wide use, there is consensus that it is not a 
particularly effective method for detrending, as it fails to cap-
ture cross-term variables and trend [21], [25]. Others such as 
Harvey and Jaeger [19], Haida and Muto [6], and Gaunholt 
[18] have used filters or discrete Fourier transforms to find a 
smooth trend through time series in economics, road profile 
measurements, and electric power forecasting, respectively. 

Unfortunately, in natural gas consumption, the trend over 
time is not smooth. Rather, gas consumption is shaped by both 
base load and heat load, which vary with factors we men-
tioned earlier. Considering this, two simple detrending 
methods are primarily used in natural gas forecasting. These 
two models serve as effective benchmarks for our proposed 
model. 

Let  .l  represent a typical linear regression model for 
forecasting daily natural gas demand [4] and be Benchmark 
Model 1. Let Benchmark Model 2 be Benchmark Model 1 
with an additional linear trend term. 

   1
ˆ .kS l k  , (2)  

where ˆ
kS is the consumption for the kth day,  .l  is Benchmark 

Model 1, and 1k is the trend on day k. 

Domain knowledge informs us that the load can be broken 
into base load and heat load components, and these component 
loads can change independently with time.  In Benchmark 
Model 3, we introduce an estimate for consumption, 

   1 2
ˆ .k kS l k k HDD     , (3) 

where HDDk is the heating degree day on the kth day. The 
advantage of this technique is that it captures both trend in 
baseload with 1k  and trend in heat load with 2 kk HDD  . 

III. DETRENDING ALGORITHM FOR NATURAL GAS DATA  
Benchmark Models 2 and 3 have terms to account partially 

for the trends in the historical data.  In this section, we present 
an approach to detrend the historical data before estimating the 
parameters of the forecasting model  .l . The problem of a 
non-stationary customer base can be overcome partially by 
detrending older historical data. A simple way to adjust his-
torical data is to transform its characteristics to match the most 



recent heating season by calculating a linear regression model 
on each heating season and considering its coefficients as time 
varying. Consumption from heating seasons prior to the most 
recent one can be adjusted by adding a base load factor to each 
day to equate the base load to the most recent season and 
additional consumption proportional to the daily HDD to 
adjust the use per HDD factor to be the same as the use per 
HDD for the most recent season. For example, consider the 
two-parameter model 0 1

ˆ
k kS k HDD   . Using 2009–2010 

heating season data (July 2009 through June 2010), we build a 
two-parameter model 

 2010 2010
0 1

ˆ
k kS HDD   . (4) 

The two-parameter model for 2008–2009 data is 

 2009 2009
0 1

ˆ
k kS HDD   .  (5) 

The difference between 2009
0  and 2010

0  is the trend in the 
base load between the two heating seasons. The difference 
between 2009

1  and 2010
1  is the trend in the consumption per 

HDD. If conditions from the 2008–2009 heating season had 
occurred on the 2009–2010 customer base, we would expect 
the base load to change by 2010 2009

0 0  , i.e., the change in the 
base load between the heating seasons. The expected heat load 
is the change in consumption per heating degree day times the 
heating degree day, which is  2010 2009

1 1 kHDD  . 

All the data in the 2008–2009 heating season is detrended 
by adding this adjustment to the daily consumption. For each 
day k in the 2008–2009 heating season, we replace the original 
consumption 2009orig

ks  with 
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If the two-parameter linear regression model is fit to the 
detrended 2008–2009 consumption data, its base load and heat 
load coefficients are the same as the base load and heat load 
coefficients of the 2009–2010 model. 

This process repeats for historical heating season data and 
learns another two-parameter model. 

 2008 2008
0 1

ˆ
k kS HDD   . (7) 

Using these model parameters, we similarly detrended this 
year of data, 
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. (8) 

The detrended data has the same base load and heat load 
characteristics as the 2009–2010 data. Historical load is 
adjusted using the two-parameter approach described above. 
The time series for original consumption, detrended consump-
tion, and growth in consumption (the amount of adjustment 
that is added to the original consumption to get the detrended 
consumption) are shown in Figure 2, where we observe a 
gradual increase in consumption during the training period. 
The consumption versus temperature scatter plots of the 

original data (before detrending) and adjusted data (after 
detrending) are proximally shown in Figure 3. The scatter plot 
of adjusted data is much tighter. For example, the consump-
tion at 40 HDD in the original plot is between 650 and 950 
Dth. After detrending, the consumption at 40 HDD is between 
800 and 950 Dth. 

Figure 2. Actual consumption, detrended consumption, and net trend in load. 

The two-parameter detrending algorithm introduced above 
produced a more tightly clustered series than the original 
series. However, it introduced opportunities for further 
improvement. First, the two-parameter model has only two 
degrees of freedom. Including more domain-relevant factors 
certainly leads to a better model [4]. Second, adjusting the 
trend for each heating season yields level discontinuities. 
Building the detrending models with higher temporal resolu-
tion smooths out the discontinuities. These two improvements 
lead to the five-parameter algorithm described next. 

 

Figure 3. Scatter plot of actual load (left) and detrended load (right) 

The HDD reference temperature that best captures cus-
tomer behavior varies with time. Using a single fixed refer-
ence temperature in the model is insufficient, as it does not 
capture the optimal reference temperature for the utility ser-
vice region. One way to adjust this change is to give the model 
an extra degree of freedom by including a second HDD factor 
with a reference temperature of 55°F for an improved fit when 
the optimal HDD reference temperature is between 65°F and 
55°F. 



Domain expertise and thermodynamics tell us that heat 
loss in homes and buildings is a dynamic process [4], [7]. As 
such, the heat load may vary, even at the same outside temper-
ature. Consider heating a typical house. Suppose two days 
have the same temperature, say 30°F. If the first 30°F day 
follows a day that is much colder, and the second 30°F follows 
a day that is much warmer, the first 30°F day usually requires 
more gas than the second. To account for this effect, we intro-
duce a new term for the change of HDD from the previous 
day, 

 1k k kHDD HDD HDD    , (9) 

where kHDD  is the change in heating degree day from day 
1k   to day k . 

Additionally, to account for variation in consumption of 
natural gas for temperatures above 65°F, a fifth factor, a 
cooling degree day  

  65 max 65,0k kCDD T   (10) 

is added [4]. These additional variables, well established and 
used in the energy forecasting domain [4], [11], [16], were 
added to the two-parameter model to produce the five-
parameter model. 
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, (11) 

where 65
kHDD  is the heating degree day using a reference of 

65°F for day k , 55
kHDD  is heating degree day with a refer-

ence of 55°F for day k . 

The method described in (4) – (8) is built with one trend 
model per year, yielding discontinuities in trends between 
years. A model with higher temporal resolution eliminates this 
effect. To achieve this, instead of building one model per year, 
we build models on a sliding one year window of data.  We 
slide the one-year window of data through all the historical 
data with one month increments to get time-varying 
detrending model coefficients. For instance, if the most recent 
model was built on data from July 2009 through June 2010, 
the second model is built on data from June 2009 through May 
2010; the third from May 2009 through April 2010, etc. These 
coefficients are then smoothed to get continuous-valued time-
varying detrending model coefficients. Then, these curves are 
used to adjust the historical data. 

IV. BENCHMARK TESTING OF THE DETRENDING MODELS 
The validity and effectiveness of the five-parameter data 

detrending method presented here can best be tested by 
building models and evaluating forecasts made with the 
models.   

The same natural gas consumption series from a U.S.-
based LDC are forecast using the four multiple linear regres-
sion models discussed previously. The original series is used 
to parameterize the coefficients of Benchmark Model 1 
(typical model without trend factors), Benchmark Model 2 
(typical model with linear trend), Benchmark Model 3 (typical 
model with linear trend and linear trend crossed with HDD).  

The fourth model is the same typical model without trend 
factors as Benchmark Model 1 but parameterized on the five-
parameter model detrended data (it is not the five-parameter 
model).  

The original series contains 15 years of gas consumption 
data. The last year of this series is held back for ex-ante testing 
to evaluate accuracy, while the forecasting models are built 
using the most recent three, five, seven, and all 14 years of the 
remaining data as a training set. The magnitude of gas load 
data has been scaled in this paper to protect the proprietary 
LDC data. To assess forecast accuracy, Root Mean Square 
Error (RMSE) and Weighted Mean Average Percentage Error 
(WMAPE) are used. RMSE penalizes larger errors much more 
than smaller ones, and WMAPE yields percentage error but 
weights the error relative to the amount of consumption. 
Hence, the highest weighting was given to winter days, 
followed by spring and fall, with summer being weighted the 
least. These metrics reflect the penalties that the LDC’s 
customers pay for inaccurate forecasts better than the com-
monly used Mean Absolute Percentage Error (MAPE) or 
Mean Absolute Error (MAE).  

 

Figure 4. Test set WMAPE for models by number of years of training data 

Figure 4 shows the WMAPE for the test sets. Figure 4 
shows that, on forecasting models without historical trend 
adjustment to the training data, forecast error increases as 
more years of training data are used for model development. 
Benchmark Models 2 and 3 performed better than the typical 
model, but also suffer when the training data gets long as the 
non-stationarity is not modeled well. The forecast error of the 
typical model built on the detrended historical data decreases 
with more training data. 

When comparing the model built on domain-based five-
parameter detrended data with the traditional benchmark 
detrending models, we see that nonlinear features are 
important in modeling the non-stationarity of the data. These 
nonlinear features capture the natural gas consumption trends 
more accurately than the traditional benchmark models. Even 
though the traditional model can take linearly increasing load 
into account, it does not capture seasonal variance. Further, 
Benchmark Model 3 with a product of linear trend and HDD 
term shows large improvements over the simple trend model 
(Benchmark Model 2). 



V. CONCLUSIONS 
In this study, we have shown that better short-term natural 

gas demand forecast models can be built using long detrended 
historical data sets than models with detrending factors built 
on the original data.  We have presented the detrending algo-
rithm. 

A short-term natural gas forecasting model without 
detrending was compared to three detrending techniques. The 
study provides evidence that domains constrained by non-
stationarity can leverage larger training sets by detrending 
older data. Specifically, it proposes that certain domains, such 
as natural gas consumption, that pose a challenge for 
traditional detrending approaches may benefit from examining 
alternative detrending techniques that build upon parameters 
unique to their domain. The methods described in this paper 
for detrending and forecasting are currently implemented at 30 
LDCs in the U.S. and have been improving LDC’s forecasts 
for several years. 

The idea of detrending time series discussed in this paper 
can be applied to a wide range of series in different domains, 
such as engineering, business, and economic studies, to 
generate improved forecasts. For instance, to our knowledge 
these techniques have not been applied to electric load 
demand forecasting, but are easily transferrable to this 
domain. For instance, the electric power forecasting domain 
could benefit from a similar algorithm by using Cooling 
Degree Days (CDD) instead of HDD to model summer air 
conditioning load.  

Furthermore, interesting variations might emerge from 
applying these approaches to other national data. Natural gas 
consumption patterns in Europe and Asia, for example, are 
distinctive from those in the U.S. because of differences in 
environmental factors, technologies, and consumption behave-
iors, among others. Calibrating the detrending models to these 
diverse settings could enhance the opportunities for domain-
based application of detrending variables. Additional research 
opportunities may emerge from applications to other renew-
able energy domains such as nuclear power, and economic and 
financial phenomena. For instance, the test set in this study 
ranged from the 2009 to 2010 heating season. Natural gas 
consumption during this heating season was affected by 
changes in economic conditions strong enough to alter con-
sumption characteristics. Incorporating economic variables in 
these models could yield further opportunities to refine the 
proposed models, and work is in progress to do so. Finally, 
researchers also may find beneficial extensions of this study 
through investigation of additional or alternative variables and 
functional forms of the model for detrending LDC consump-
tion data.  
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