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Abstract—This paper proposed the combination of two statis-
tical techniques for the detection and imputation of outliers in
time series data. An autoregressive integrated moving average
with exogenous inputs (ARIMAX) model is used to extract the
characteristics of the time series and to find the residuals. The
outliers are detected by performing hypothesis testing on the
extrema of the residuals and the anomalous data are imputed
using another ARIMAX model. The process is performed in an
iterative way because at the beginning the process, the residuals
are contaminated by the anomalies and therefore, the ARIMAX
model needs to be re-learned on “cleaner” data at every step. We
test the algorithm using both synthetic and real data sets and we
present the analysis and comments on those results.

Index Terms—outlier, hypothesis testing, time series, ARIMAX,
imputation.

I. INTRODUCTION

In the energy domain, good forecasting results are achieved
by learning the models on data sets that accurately represent
the particularities of the problem. The time series data often
contain anomalies which can be due to various causes ranging
from human error (e.g. mistyping) to system error (e.g. erro-
neous measurement). The data is cleaned for the purpose of
being used to train a forecasting model. Training a forecasting
model on anomalous data will result in erroneous estimates.
Hence, outlier detection is one of the most important and
critical problems in the forecasting domain. A data point is
classified anomalous depending on the context, and this is the
reason why we limit our analysis to the energy domain.

This paper presents a novel approach that combines ARI-
MAX model and hypothesis testing to find and impute outliers
in time series data sets. The contribution of the proposed
algorithm is its ability to extract the time-series characteristic
of the data set and focus on the residuals for outlier detection.
The residuals form a distribution in which the algorithm is able
to distinguish between data points in the tails of a distribution
and outliers by taking into account the statistics of the residuals
and the number of samples in the data set.

The next section of the paper presents some background of
the outlier detection problem. Section 3 presents the ARIMAX
model, the hypothesis-driven algorithm and show how both
techniques are combined to form the time series detection
and imputation algorithm. Section 4 presents the results and
analysis.

This work was supported by the GasDay Laboratory at Marquette Univer-
sity.

II. BACKGROUND

Outliers, in this paper, refer to data points that are consider-
ably dissimilar to the remaining points in the data set [1]. In the
energy domain, “clean” data is required to train and develop
accurate models for forecasting. It has been shown that there
are two types of outliers in time series: additive outliers (AO)
that are isolated events and innovative outliers (IO) that are
errors propagated through time in the system [2]. The author
in [2] also showed how linear models can be used for the
detection of AO and IO in stationary time series. The impact
of anomalous data in the parameter estimation of ARIMA
models have been studied by [3]–[7]. The modification of
time series structure (variance changes and level shifts) by
additive and innovative outliers was studied by [8]. Outlier
detection using clustering techniques by considering a multi-
dimensional space composed of different inputs was studied
by [9]–[11]. In [12], the clustering techniques are applied in
both the time and delay spaces to detect anomalies. The idea
is that the delay space shows characteristics of the anomalies
that are invisible or not easily extractable in the time domain.
Outlier detection using neural networks, have also been studied
by [13]. Another technique that uses a Kalman filter to detect
and "clean" outliers was proposed by [14].

Our proposed technique uses an ARIMAX model to esti-
mate the parameters of the time series. The parameters are
skewed because of the presence of outliers in the data set
as demonstrated by [3]–[5], [7]. The residuals will portray the
largest anomalies only as a starting point. The outliers are then
detected using hypothesis testing on the residuals, but we will
not classify them as additive or innovative. Hypothesis testing
efficiently avoids false positive by considering the residuals
as a set of data points drawn from the same distribution and
by considering the number of samples. The hypothesis testing
identifies only data points that are dissimilar or inconsistent
with the time series data set. As the outliers are removed, the
parameter estimation will yield more valid results. The next
section of this paper will present both techniques and show
the time series outlier detection and imputation algorithm.

III. TECHNIQUES

This section presents the techniques used for outlier detec-
tion and imputation in this paper. The ARIMAX model and
the hypothesis testing are both statistical models. The next
sections give an overview of the techniques.

A. ARIMAX model
An ARMAX or autoregressive-moving average model with

exogenous inputs is a class of models that describes a sta-

978-1-4799-6415-4/14/$31.00 ©2014 IEEE



2

tionary and invertible time series process [15]. An exogenous
input is one that comes from an external system. The output
of an ARMAX model is written as a linear combination of a
sequence of uncorrelated random variables:

yt = c+

p∑
i=1

φiyt−i +

q∑
i=0

θiεt−i +

nx∑
i=0

ηibt−i. (1)

where, εt is white noise. φi, θi and ηi are respectively
the coefficients of the autoregressive, moving average and
exogenous inputs. Also, p, q and nx are respectively the orders
of the autoregressive, moving average and exogenous inputs.
The ARMAX model is therefore noted ARMAX(p, q, nx). An
ARMAX(p, 0, 0) is simply an autoregressive AR(p) model.

In the case where the random process is not exactly white
noise, the difference series 5nyt is an ARMA(p, q) process,
with 5yt = yt - yt−1 [15]. The non-stationary model is
referred to as the autoregressive-integrated-moving average
(ARIMA) model and has a differentiation degree D as ad-
ditional input. An ARIMA model with D = 0 is simply
an ARMA model. In conclusion, an ARIMAX model has
four parameters, an autoregressive order p, a moving-average
order q, an exogenous inputs number of terms nx and a
differentiation degree D and it is noted ARIMAX(p,D, q, nx).
Given model orders and a particular time series signal, the
model estimation process estimates the coefficients c, φi, θi,
and ηi.

B. Hypothesis-driven outlier detection algorithm

Hypothesis testing is used in this paper to statistically test
the likelihood of the residuals. A statistical hypothesis is a
statement about the values of the parameters of a probability
distribution [16]. For this paper, it is a statement about the
extrema of the residuals compared to the parameters of the
probability distribution. The null hypothesis (H0) is that the
extremum is not an outlier. While, the alternative hypotheses
(Halt) is that the extremum is an outlier. The null is rejected
in favor of the alternative with a level of significance α, where
α is the probability of committing a type I. A type I occurs if
the null hypothesis is rejected when true and type II occurs if
the null hypothesis is not rejected when it is false. We choose
the probability of committing a type I error with a probability
α = 0.1.

Let us define the experiment Y = {Classifying an ex-
tremum}. The possible outcomes of the experiment Y are
“outlier” or “not outlier". If the probability of “outlier” in
the experiment Y is p, the probability of “not outlier” is
(1 − p). The number of samples in the data set is n . Each
classification of an extremum is an independent experiment.
Therefore, the experiment Y is a Bernoulli trial. The problem
is reduced to finding the number of Y Bernoulli trials needed
to get an “outlier” in at least n trials and supported by the
set of samples n . It corresponds to the cumulative distribution
function of a geometric distribution. The number of Bernoulli
trials should be less than the level of significance α for the
algorithm to have exhausted all possibilities. By taking into
account the number of samples and the probability of the data
points, the hypothesis-driven outlier detection algorithm also

sets an effective bound on how many potential outliers there
might be in a data set.

Algorithm 1 HYPOTHESIS-OUTLIER-DETECTION

Require : X , α, assumed distribution Dist(X , β).

Xmin ← X \ {x}
Xmax ← X \ {x}
Distmin ← estimate β’s of Xmin

Distmax ← estimate β’s of Xmax

pmin ← cdf(Distmin, x)
pmax ← cdf(Distmax, x)
gmin ← 1− (1− pmin)

n

gmax ← 1− (1− pmax )
n

if (gmax < α) ∨ (gmin < α) then
if (gmin < gmax) then

outlierIndex ← index(x )
else

outlierIndex ← index(x )
end if

else
outlierIndex ← nil

end if
return outlierIndex

The probability p depends on the data point values and the
underlying distribution from which the point was taken. The
advantage of our hypothesis-driven outlier detection algorithm
is that it takes into account the number of samples and
the assumed distribution from which the samples are drawn.
Therefore, the technique considers the residuals as an ensem-
ble of data points drawn from a distribution and focuses on
the anomalous ones. Most importantly, the algorithm detects
points that are most unlikely to be drawn from the assumed
underlying distribution. The next section presents examples
using both synthetic and real data sets. The synthetic data sets
allow us to test the algorithms. The real data set shows the
performance and feasibility of the algorithm, and the results
are interpreted using energy domain knowledge.

C. Time series outlier detection and imputation algorithm

A time series data is a set of statistics, collected at regular
intervals [15]. A time series can be decomposed into four ele-
ments: trend, seasonal effects, cycles and residuals. Therefore
the idea behind our reasoning is that the ARIMAX model,
used to estimate the parameters of the model, will extract the
trend, seasonal effects and cycles characteristics of the data
set. The residuals found after estimation with the ARIMAX
model, form a distribution of points where outliers are detected
using hypothesis testing. The ARIMAX model is re-trained on
cleaner data and the new model is used to forecast the outliers.

The algorithm supposes that the order of the ARIMAX
model is known a priori . The parameter estimates are er-
roneous in the beginning of the process because the data set
contains anomalies, but the trend is extracted such that the
residuals can depict those anomalies. After an outlier is re-
moved, the parameter of the ARIMAX model are recalculated
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with the outlier replaced by a naive impute of the mean of past
and previous timesteps. This step ensures that the point is not
a false positive and also removes some contamination from
the imputation model. The model parameters estimation is
improved after each outlier is removed. The model trained on
cleaner data is used to forecast an estimate value for the data
point and the estimates are replaced in the time series signal
and the process continue until no more outliers are identified.
The time series outlier detection and imputation algorithm is
presented here.

Algorithm 2 TS-OUTLIER-DETECTION-IMPUTATION

Require : time series S, α, ARIMA model order (p, D ,
q), exogenous inputs b

potentialOutliers ← true
I ← ∅
while (potentialOutliers) do

m ← ARIMAX(S, b)
r ← CALCULATE-RESIDUALS(m, S, b)
i ← HYPOTHESIS-OUTLIER-DETECTION(r, α)
if i == nil then

potentialOutliers ← false
else
S[i] ← 0.5(S[i− 1] + S[i+ 1])
m ← ARIMAX(S, b)
I ← I ∪ {i}
for j = 1 : I.length do
S[I[j]] ← FORECAST(m, S, I[j])

end for
end if

end while
return S, I

The algorithm illustrates each step of the outlier detection
and imputation. It also shows the iterative nature of the
process. The next section of this paper will present the data
sets that we used as examples and the results obtained.

IV. RESULTS

This section gives a description of the data sets before
presenting the results obtained by the algorithm using those
data sets.

A. Data

We will present two data sets, a synthetic data set and
a real data set. The synthetic data set is generated using
an ARIMAX(3, 1, 1, 3) and with exogenous inputs drawn
from a Gaussian distribution N (0, 0.01). Four outliers, at the
timesteps {100, 366, 394 and 395} are introduced in the data
set by two different ARIMAX processes. The data set is first
perturbed with outliers’ samples introduced by an ARIMAX(2,
0, 1, 3) process: {(100, -4.4), (366, -2.6), (394, 2.1), (395,
2.2)}and the graph is presented in Figure 1. Then, the same
synthetic data set is perturbed with outliers’ samples drawn
from an ARIMAX(4, 0, 1, 3) process: {(100, 7.5), (366, 10),
(394, 4), (395, 5)} and the data set is presented in Figure 2.

Figure 1: Synthetic data set simulated using an ARIMAX(3,
1, 1, 3) with the four outliers drawn from ARIMAX(2, 0, 1,
3) depicted on the graph

Figure 2: Synthetic data set simulated using an ARIMAX(3,
1, 1, 3) with the four outliers drawn from ARIMAX(4, 0, 1,
3) depicted on the graph

Figure 3 shows 3620 observations of aggregated daily
electric load for an operating area in the United States. For
this data set, temperature is used as exogenous input, the
data is normalized for confidentiality purposes. We test the
synthetic data sets to demonstrate that the algorithm identifies
the outliers. For the real data set, we determine whether or
not the real data sets contains outliers. The results for all data
sets are presented and commented below.

B. Results

The results obtained using the three data sets are presented
in Figure 4, Figure 5 and Figure 6. Figure 4 and Figure 5
depicts the original synthetic data set, the outliers and the
imputed values of the outliers. The outliers are introduced at
the same positions to make a comparison between imputed
values for both cases (see Table I). For the synthetic data
sets, the outliers included are all found by the algorithm. After
the last outlier is found in both cases, the hypothesis-driven
outlier detection algorithm returns the value NIL, which is the
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Figure 3: Daily aggregated electric load for an operating area
in the United States

Position Actuals Outliers Imputed |error|

Figure 4

100 0.26 -4.4 0.82 0.56
366 3.64 -2.6 3.38 0.26
394 -2.89 2.1 -3.64 0.75
395 -2.96 2.2 -3.55 0.59

Figure 5

100 0.26 7.5 0.83 0.57
366 3.64 10 3.39 0.25
394 -2.89 4 -3.53 0.64
395 -2.96 5 -3.65 0.69

Table I: Synthetic data set results

sentinel for the completion of the algorithm. Table I presents
the results for the synthetic data sets. The table gives the
position, the actual and outliers values and the imputed values
found by the algorithm; it also gives a comparison (in absolute
value) between actuals and imputed value because the model
parameters are modified in presence of outliers.

The model used to simulate the data set is

yt = 0.5yt−1 − 0.3yt−2 + 0.2yt−3 + 0.2εt + 1.5mt

+2.6mt−1 − 0.3mt−2. (2)

The estimated model (see Figure 4) after all outliers are
removed and imputed in the case of outliers introduced by
an ARIMAX(2, 0, 1, 3) process is

yt = 0.55yt−1 − 0.30yt−2 + 0.26yt−3 + 0.10εt + 1.61mt

+2.5mt−1 − 0.38mt−2.
(3)

The estimated model (see Figure 5) after all outliers are
removed and imputed in the case of outliers introduced by
an ARIMAX(4, 0, 1, 3) process is

yt = 0.55yt−1 − 0.3yt−2 + 0.26yt−3 + 0.09εt + 1.59mt

+2.54mt−1 − 0.39mt−2.
(4)

In general, the absolute error is low (compare to the maximum
value in the data set which is 12.5). When the data point to
forecast is small, the imputed values are sensitive to the model

Figure 4: Algorithm results on the synthetic data set perturbed
with four outliers drawn from an ARIMAX(2, 0, 1, 3) model

Figure 5: Algorithm results on the synthetic data set perturbed
with four outliers drawn from an ARIMAX(4, 0, 1, 3) model

error. The results show that in general, outliers impact the
estimation of the parameters of a time series data set and that
removing those provide improvement to the forecasting model.

For the electric consumption data set (see Figure 6, the
time series outlier detection and imputation algorithm found 11
outliers using an ARIMAX(5, 1, 3, 3) model. The residuals are
assumed to be normally distributed in the outlier detection part
of the algorithm. The red dots in Figure 6 depict the outliers
found while the green dots are their corresponding imputed
values. We should note that because the data is scaled, the
point correspond to a zero is actually not zero, it is just the
minimum point in the data set. Looking at Figure 6, we can
notice that year 01 was much warmer than year 00, which
is why the first two outliers points are expected to be much
higher values than what their original values. Also, outliers
in year 06, 07, 08 and 09 are correlated with temperature in
those years. The temperature of the minimum point in the data
set is 36◦F on average for that particular day, so the electric
demand value is expected to be around the baseload. The
major constraint of our approach is that the assumed orders
of the ARIMAX process must be close to the true orders of
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Figure 6: Algorithm result on the daily aggregated electric
load data set using an ARIMAX (5, 1, 3, 3) and temperature
as exogenous inputs

the system. The order depend on the number of observations
and type and number of exogenous inputs. Various techniques,
such as the Bayesian Information Criteria (BIC) [17] or the
Box-Jenkins method [18], have been developed to estimate the
orders of a time series model.

V. CONCLUSION

Many techniques have been developed for outlier detection.
This paper presents a novel approach for outlier detection
and imputation based on statistical methods. The algorithm
ensures that corrupted parameters are not used for imputation
by doing a naive imputation that consists of the average of the
neighboring time samples before re-learning the model. The
re-learned model is then used for imputation. This extra step
decontaminates the model from the outlier previously found.
The main contribution of this technique is the development
of outlier detection algorithm based on hypothesis testing
and using the number of samples in the data set, and the
combination of ARIMAX and hypothesis testing to efficiently
detect outliers in time series data.
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