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Abstract—Daily demand forecasting is a necessary process in
the supply chain of natural gas. One of the largest challenges
in demand forecasting is adapting to systematic changes in
demand. While there are many types of mathematical models
for forecasting, there is no perfect formula. Ensembling several
models often results in a better forecast. A common method for
ensembling component models is taking a weighted average of
the model forecasts. Due to the challenge of adapting to changes
in demand, it is important to track the weights associated with
each component model in an ensemble. We have developed an
ensembling method, called the Dynamic Post Processor (DPP).
The DPP ensembles several forecasting models, while tuning the
weights based on recent performance of the models. It also
removes biases from the component models in order to track
changing patterns in natural gas demand. The ensemble yields
better forecasts than any of the individual component models and
reduces the mean forecasting error caused by systematic changes.

Index Terms—Ensemble, dynamic systems, neural network,
linear regression, recursive least squares, natural gas, load
forecasting, energy

1. INTRODUCTION

Natural gas is used to cook, heat water, dry clothes, and
heat homes. The amount of natural gas needed to heat homes is
weather sensitive; therefore, the winter has highly variable de-
mands. Energy utilities need to procure the appropriate amount
of daily natural gas to meet customer demands. Inaccurate
forecasts can lead to excessive costs, which are passed to the
customers. Therefore, accurate forecasts are needed.

Linear regression models have been found to predict natural
gas demand well when weather and historical gas flow are
used as dependent variables [1]. Although gas demand tends
to be linearly correlated with temperature, there are limits to
linear regression models’ abilities to forecast. Neural networks
are able to represent many of the nonlinear relationships
and characteristics that regression models cannot [2]. For
example, when temperature rises towards "comfortable" levels,
residential consumers tend to have their furnaces on less, and
thus the gas consumption pattern changes. Neural networks
are able capture this nonlinear behavior [2].

Research at Marquette University’s GasDay Laboratory has
found that no single model can track accurately the behavior
of real time weather data and consumer usage trends. To
account for linear and non-linear trends, both linear regression

This work was supported by the GasDay Laboratory at Marquette Univer-
sity.

models and artificial neural networks are used. Combining
both models increases forecasting accuracy. However, the
weighting of the models may no longer accurately represent
emerging trends as new data becomes available if weights
are predetermined by training data. We propose a mechanism
to tune the ensemble model weightings to capture emerging
trends in the incoming data during the heating season.

A background for this work, including previous works
and a mathematical background, is given in Section 2. In
Section 3, our methods are described. In Section 4, results
of our experiment are presented and discussed. A conclusion
is presented in Section 5.

2. BACKGROUND

A. Ensemble Models

Ensemble models are effective for a variety of reasons;
each component model of the ensemble uses a specific set
of information and tends to make conclusions that focus on
certain aspects of the data. Thus, each model usually represents
an incomplete model of the entire system [3]. Ensembling the
results uses more aspects of the information. The combination
of forecasts also helps compensate for biases in individual
models [4]. Various techniques exist for ensembling com-
ponent models, with different techniques each having their
own advantages and disadvantages [5], [6]. These techniques
differ in the way that different components are weighted and
combined into the ensemble. Weigel et al. [7] has shown
the considerable advantage of a weighted ensemble over any
single component. The weighted ensemble reduced overcon-
fidence and mean error. Ensemble models that dynamically
change how component models are included in the model have
been shown to be advantageous over those that do not change
[8]–[10]. Ensembling methods have been used extensively in
forecasting natural gas demand [11]–[15].

B. Component Models

There are two component models we use throughout this
paper; a linear regression (LR) model and an artificial neural
network (ANN).

1) Linear Regression Models: Historically, LR models [16]
have been a popular method for time series prediction and
have been used for energy forecasting [1], [17]. Using linear
regression, the energy demand S for a single day is estimated
by
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S ≈ Ŝ = β0 +

m∑
j=1

βjxj , (1)

where xj is the value of input j, and βj is the parameter
which specifies the relationship between input j and the output
for each of the m inputs. For energy forecasting, β0 usually
represents base load, and each of the inputs are weather
variables such as heating degree days. For more on how linear
regression models are used in natural gas forecasting, see [1].

2) Artificial Neural Network Models: One of the weak-
nesses of LR models is the assumption that all the inputs used
in the model have a linear relationship with the outputs. This
is rarely true in real world systems and certainly not true in
energy forecasting. For this reason, many energy forecasters
use Artificial Neural Networks (ANNs) [18], as they are
capable of modeling the nonlinear relationships between the
inputs and outputs of a system [19]. The ANNs used in
this paper are feed-forward neural networks which have been
shown to be effective approximators for many systems [20].

C. Recursive Least Squares

Natural gas consumption model parameters are estimated
through absolute error minimization between predicted and
actual consumption. Since natural gas consumption provides
a steady stream of data, the parameters that define a natural
gas consumption model are out of date days after they are
first estimated. To incorporate new data into the estimation of
parameters, we use a recursive identification method.

Recursive Least Squares is the recursive identification
method used in this paper. Recursive Least Squares was first
introduced by Gauss [21], and later clarified by Plackett [22],
as a method for updating estimations of unknown parameters
given additional data to a model. It has since been used to that
effect in numerous energy forecasting applications [11], [23],
[24]. A full derivation of this method can be found in [25].

3. METHODS

Recall that the major goal of these methods is to reduce
the error of daily natural gas forecasting over the course of a
year. We build component models to map weather inputs to
daily natural gas demand. Due to the dynamic characteristics
of natural gas demand, we expect the component models to
become less representative of the underlying relationships over
the course of the year being forecast. To this end, we track
characteristics of the system by shifting and scaling the outputs
of the dynamic models. We refer to this shifting and scaling
as tuning. In practice, we find that an error bias often remains
after tuning. To compensate, we subtract the recent mean error.
Finally, a weighted average of model outputs is taken based
on the recent variance of each component’s errors.

A. Creating the Component Models

A collection of component forecasting models is chosen
for ensembling. The inputs to these component models are
weather and calendar variables. The output of each of these
models is the forecasted natural gas consumption for one

operating area with the time horizon of the next day. We use
linear regression and artificial neural networks. However, the
method proposed in this paper is not exclusive to any particular
model structure, nor any number of components. Therefore,
the component models will be described as black boxes with
the aforementioned inputs and outputs for the remainder of the
Methods. Additionally, the component models are assumed to
have been determined from a data set independent of the data
set on which they are tested.

B. Evaluation of the Component Models

Each component model forecasts the consumption of natural
gas for day k slightly prior to the start of that day. The
component forecast demand is denoted by ĉjk for day k and
component model j. The error associated with each forecast
can only be determined two days later due to the time it takes
to record and publish actual flow. For example, the most recent
error known on day k (e.g., Thursday) is from day k−2 (e.g.,
Tuesday).

C. Tuning Each Component Model

We expect the characteristics that define the demand in an
operating area to change slowly over time. For example, if
a new neighborhood is developed, the output of each model
should be scaled and shifted up to match a growing demand.
To generalize the tracking of dynamic daily gas demand
characteristics to any class of forecasting model, we scale
and shift the output of each component model rather than
the parameters that define the component model. In practice,
this means each component’s forecast demand, ĉjk, is used
as an input to a two parameter linear regression model. The
tuning parameters θj0 and θj1 of the linear regression model
correspond to the coefficients of the bias term and ĉjk for the
jth component model, respectively. The output from the linear
regression model is the tuned component forecast, c̃jk.

D. Updating the Tuning Parameters

The updated tuning parameters are determined using a two-
step ahead method using Recursive Least Squares. The tuning
parameters are updated using the error from day k − 2. The
error generated for day k− 2 does not reflect the current state
of the system, as θ is updated on day k − 1. An a posteriori
forecast for day k − 2, c̃j

′

k−2, is therefore made using the θ
updated on day k − 1.

c̃j
′

k−2 =
[
1 ĉjk−2

] [θj0
θj1

]
. (2)

The a posteriori error is

ẽj
′

k−2 = c̃j
′

k−2 − sk−2, (3)

where sk−2 is the measured natural gas consumption. ẽj
′

k−2 is
processed further because the measured natural gas consump-
tion is subject to human and mechanical errors. Thresholds
are set such that large errors are limited so that extreme errors
(often caused by bad data) do not impact the weights. Small
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errors are treated as zero error and the tuning step is skipped.
The small error threshold is set manually and denoted minerr.
The large error threshold is calculated by

maxerr = maxerrfactor · sk +minerr, (4)

where maxerrfactor is set manually. With this limited error,
the tuning parameters are updated using Recursive Least
Squares. The tuning is forced to favor the output of the
component model, rather than the bias term. This occurs
according to Equation 5:

θ = (1 − γ)θ + γ

[
0
1

]
, (5)

where γ is a manually set forgetting factor.

E. Calculating Recent Mean and Variance Error
We have found that our tuning through recursive least

squares does not drive the mean error of the forecast to zero.
For this reason, we subtract the recent mean error from our
forecasts. Using the newly tuned and stabilized θ, the error
from two days ago is recalculated and denoted by ẽj

′′

k−2. This
error is limited in the same manner as previous errors. The
recent mean error, µ̃j

k−2, is updated

µ̃j
k−2 = α · µ̃j

k−3 + (1 − α) · ẽj
′′

k−2, (6)

where α is a manually set forgetting factor. Subtracting the
recent mean drives the mean error to zero (for an empirical
example, see Figure 2). Intuitively, given zero mean error, it
makes sense to weight the component models based on the
variance of error. The recent error variance is updated,

ṽjk−2 = α · ṽjk−3 + (1 − α) · (ẽj
′′

k−2 − µ̃j
k−2)2. (7)

The recent mean is subtracted from the current forecast c̃jk,
yielding the component’s tuned forecast, c̄jk.

F. Weighted Mean Ensemble
The components are ensembled using a weighted mean.

Given n component models, the weight of each component
model, j, is

wj =

1√
ṽj

n∑
i=1

1√
ṽi

, (8)

and the weighted forecast of the ensemble is

ŝk =

n∑
j=1

wj c̄jk (9)

This forecast is a weighted ensemble of the component models
that includes adjustments to recent variances.

The method therefore reduces several types of errors. The
squared error of the resulting forecast is reduced by tuning
each of the components using Recursive Least Squares. The
mean error is reduced by subtracting the recent mean error
from each component. Finally, the components are ensembled
by scaling the weights based on recent errors.

Figure 1. Root mean squared error of each stage of DPP for Linear Model
and ANN components.

4. RESULTS AND DISCUSSION

Two component models are trained to predict natural gas
demand for the upcoming day. Daily cumulative flow data for
an operating area in the midwest United States is used. The
weather data - to be used as inputs to the component models
- is obtained from the National Oceanic and Atmospheric
Administration (NOAA). The model is trained on data from
September of 1993 to August of 2015 and is tested on data
from September of 2015 to August of 2016.

The performance of each component at each stage of the
tuning is evaluated using root mean squared error (RMSE).
RMSE is particularly useful in natural gas forecasting because
it is especially sensitive to large errors, which are of great
interest in practice. The RMSE improved after each stage in
the tuning. Further, the RMSE of the ensemble is better than
the RMSE of each of the components.

Much of the reason for tuning the component models is to
remove the mean error. For this reason, we show how quickly
the mean error of each component tends to zero. As seen in
Figure 2, the mean error of the ensemble tends to zero over the
period of the 365 days. The mean error of the raw component
outputs does not approach zero. Therefore, the tuning and
ensembling of the components filter out a significant amount
of error. Figure 2 is also demonstrates how the ensemble can
perform better than the best component that makes it up. The
mean error of the ensemble is never the farthest from zero,
but it is often times the closest to zero.

5. CONCLUSION

The proposed dynamic tracking and ensembling presented
in this paper improves forecasts of natural gas consumption in
a non-stationary system. We can therefore improve planning
for natural gas demand even as the characteristics that drive
demand change over time. Improved forecasts result in lower
planning costs for utilities.
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Figure 2. The running mean error of each stage of the DPP for Linear Model
and ANN components. For each day k, the errors of days 0 through k are
summed, then divided by k. The mean error of forecasts when the recent
mean is subtracted out is driven to zero.
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