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Abstract – In this paper, a Condition Monitoring Vector 

Database (CMVDB) approach for broken bar fault diagnostics 
of squirrel-cage induction machines is presented. In this 
approach, a database of so-called “condition monitoring 
vectors” (CMVs) is generated for healthy and broken bar fault 
conditions using the time-stepping Finite-Element method. The 
CMV consists of the negative sequence components of winding 
voltages, currents, and impedances, the frequency spectrum 
sideband components of motor currents, and the space-vectors 
of motor terminal quantities (currents and voltages) from which 
the motor magnetic field pendulous oscillations are derived, as 
well as the motor speed and developed torque. This CMV will 
serve as the fault index (signature) for the faults under 
investigation in this work. This database is intended for use as a 
reference database in an on-line condition monitoring and fault 
diagnostic system. In this work, Artificial Intelligence (AI) 
techniques based on a statistical machine learning approach are 
used to detect and distinguish the type of fault and its severity 
based on the on-line measurements of the motor terminal 
voltages and currents, as well as the motor speed and developed 
torque, in comparison to the available CMVDB. To demonstrate 
the proof-of-principle of the database approach, simulation and 
experimental results for a 2-hp induction motor are given here 
to verify the viability of this approach. 
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I.  INTRODUCTION 

In the past two decades, there have been many 
investigations on condition monitoring and fault diagnostics 
in electric machines, especially squirrel-cage induction 
motors such as in [1-17]. In many applications involving 
medium to large integral horsepower motors, it is worthwhile 
to perform sophisticated fault simulations encompassing a 
large number of fault scenarios and to verify some of these 
scenarios experimentally. Thus, one can verify the validity of 
a simulation-generated database of fault signatures for use in 
machine condition monitoring and fault diagnostics. Such an 
elaborate analysis can be justified because sudden machine 
failure is very damaging or catastrophic in applications such 
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as large industrial systems or central station power plant 
auxiliaries in which the electric machine is the prime mover. 
Consequently, these machine failures reduce productivity in 
industrial and power systems. Hence, maintenance schedules 
can proactively be implemented to reduce or prevent these 
failures. Nevertheless, the probability of a sudden machine 
failure cannot be entirely ruled out. Moreover, increasing the 
frequency of scheduled maintenance increases the cost and 
decreases the productivity of a system. Accordingly, an on-
line fault diagnostic system becomes a valuable tool to 
increase system efficiency and reliability. 

Numerous diagnostic techniques for induction motors have 
been reported in the literature to diagnose electric machine 
faults, such as stator winding inter-turn shorts, broken rotor 
bars, broken end-ring connectors, and bearing faults. These 
diagnostic techniques include computation of the negative 
sequence components of motor terminal quantities [2-4], 
detection of the frequency spectrum sideband components 
[5,6], motor parameter estimation methods [7,8], Artificial 
Intelligence (AI)-based statistical machine learning approach 
[9,10], wavelet transformation techniques [11], artificial 
neural networks [12-14], as well as the recently proposed 
motor magnetic field pendulous oscillation phenomenon [15-
17]. However, the use of such individual techniques alone is 
sufficient to detect only certain types of faults. In situations 
where mechanical load variations, partial loading, unbalanced 
utility voltage supply, or vector-control drive excitations are 
concerned, some of the aforementioned techniques, if used in 
a stand-alone manner, may not be reliable enough for fault 
diagnostics, and may yield a false indication of fault where 
non exists. Or worst, a fault could be masked by 
compensation action taken by the drive’s control system. 

The combination of some of the techniques mentioned 
above led the present investigators to another form of broken 
bar fault diagnostic approach. The approach presented in this 
paper is based on a Condition Monitoring Vector Database 
(CMVDB). This CMVDB consists of sets of so-called 
“condition monitoring vectors” (CMVs) for healthy and 
broken bar fault conditions. This CMV consists of negative 
sequence components of motor voltages, currents and 
impedances, frequency spectrum sideband components of 
motor currents, and space-vectors of the motor terminal 
quantities (currents and voltages) from which motor magnetic 
field pendulous oscillations are obtained, in addition to motor 
speed and developed torque. One knows that the negative 
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sequence components of the motor quantities will not be 
affected by the broken bar faults since the faults will not 
introduce any asymmetry effects in the stator windings. 
However, the inclusions of these negative sequence 
components in the CMV is to allow the flexibility of 
detecting any stator-winding inter-turn shorts which will be 
carried out in the near future. 

In this work, the database can best be generated using the 
time-stepping Finite-Element (TSFE) method. The generated 
healthy and faulty CMV database is used as a reference 
database for on-line condition monitoring and fault diagnostic 
purposes. Meanwhile, an AI-based statistical machine 
learning approach is developed to detect and distinguish (or 
characterize) the type of fault and its severity, based on the 
on-line measurements of the motor terminal currents and 
voltages, as well as the motor speed and developed torque, in 
comparison to the CMVs available in the CMVDB system. 
This CMVDB approach is useful in detecting a plethora of 
faults. Since the TSFE method is a time-consuming process, 
which involves complex computation algorithms, the 
CMVDB approach will be worthwhile and appropriate for 
applications involving substantial integral or large 
horsepower induction machines, such as in large industrial 
and power systems. For purposes of this proof-of-concept 
investigation, the CMVDB approach is verified using a 2-hp 
induction motor, which was TSFE simulated and 
experimentally tested in the laboratory under healthy and 
various faulty operating conditions. 

II.    CONDITION MONITORING VECTOR DATABASE APPROACH 

The CMVDB approach consists of two parts, namely (1) 
the TSFE simulations, which compute the machine 
performance such as the machine winding currents and 
voltages, and (2) the CMV computations, which calculate the 
required indices used for fault diagnostics. 
2 
A. TSFE Simulations 

The time-stepping Finite Element (TSFE) technique 
computes on a time instant-by-instant basis (time 
profiles/waveforms) the input phase and line currents, 
voltages, developed power, and torque of a motor as 
functions of the particular magnetic circuit, winding layouts, 
and materials subject to the given inverter (power 
conditioner) topologies and operating conditions. 
Computations include the full effects of interaction of 
machine space harmonics with time-domain harmonics due to 
modern fast electronics switching on overall motor-
controller/drive performance [18-21]. In addition, the TSFE 
algorithms can also be used in parametric design studies. 

The TSFE aspect fully incorporates the nonlinear effects of 
magnetic saturation in the machine and makes full use of the 
natural machine winding’s frame of reference. Hence, this  
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Fig. 1.  FE grids of the 2-hp induction motor. 
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Fig. 2.  Schematic representation of the modeling of a healthy cage. 
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Fig. 3.  Schematic representation of the modeling of a broken rotor cage bar. 

 
assures inclusion of all significant space harmonics due to the 
physical design and nonlinear nature of the motor’s magnetic 
circuits, as well as the time harmonics generated from the 
inverter switching in the motor-drive modeling and 
simulations. The TSFE method is applied here on a 230-volt, 
60-Hz, 2-pole, 2-hp, three-phase squirrel-cage induction 
motor with 36 rotor cage bars and 24 stator slots, an FE grid 
of which is shown in Fig. 1.  

Commercially available FE software packages, namely (1) 
Magsoft* and (2) MagneForce*, were used to simulate the 2-
hp induction motor. In order to simulate the bar breakages, 
the squirrel-cage loops need to be disturbed according to the 
patterns shown in Fig. 2 (healthy) and Fig. 3 (one broken 
bar). In other words, in the FE model, a segment of the bar is 
replaced by a non-conductive material to emulate one or 
more broken bar cases. The TSFE simulation is carried out 
here under direct-line utility grid excitation condition. Upon 
generating the time-domain voltages and currents from the 
FE simulations for the healthy and broken bar fault 
conditions, the next step is to compute the CMV as described 
next. 
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B. CMV Computations 

In this part of the CMVDB process, the previously 
mentioned methods such as the negative sequence approach, 
the frequency spectrum sideband technique, and the 
pendulous oscillation phenomenon are used to generate a 
database of CMVs based on the FE computed time-domain 
voltages and currents under healthy and faulty conditions. To 
clearly illustrate the idea of generating a database of CMVs, 
an 8-dimensional CMV can be expressed as follows: 
 

( )
T

n n n
LSB BB SC m dev

p p p

V I ZCMV A f T
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δ δ ω
 

= ∆ ∆ 
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Here, the first three terms of the CMV are the ratios of the 
negative and positive sequence components of the stator 
voltages, V, the stator currents, I, and the associated 
impedances, Z, where the n and p subscripts indicate the 
negative and positive sequence components, respectively. 
The first term of (1) is used to detect any unbalanced utility 
voltage power supply, whereas the second and third terms are 
used to detect stator winding inter-turn shorts [2-4] which 
will be carried out in the near future. It is of importance to 
point out that in symmetrical component theory that an 
unbalanced system will introduce negative sequence 
components [22,23]. Therefore, unbalanced systems result 
from either an unbalanced utility voltage power supply or 
stator winding inter-turn shorts, which will introduce negative 
sequence voltage and current components. Accordingly, 
using only the negative sequence current component alone for 
stator winding inter-turn fault detection is insufficient since 
an unbalanced voltage power supply will also introduce a 
negative sequence current component, and hence a false 
indication of a stator fault will be given under this condition. 

Meanwhile, the fourth term of the CMV of (1) represents 
the normalized amplitude of the low sideband (LSB) 
frequency spectrum component of the stator current at the 
frequency, ( )1 2LSB sf s f= − , where fs is the power supply 
frequency [5,6], relative to the amplitude of the fundamental 
frequency spectrum component of the stator current. This 
term is used for the detection of broken rotor cage bars [5,6]. 
The fifth and the sixth terms of the CMV of (1) are obtained 
using the motor magnetic field pendulous oscillation 
phenomenon [15-17] and they represent the range of 
oscillation (swing angle, δ∆ ) of the resultant mid air-gap 
magnetic field for broken rotor bars, BBδ∆  [16], and the stator 
winding inter-turn faults, SCδ∆  [17]. For more details on the 
concept of the pendulous oscillation technique, [15-17] 
should be consulted.  

In order to calculate the slip and hence locate the low 
sideband frequency component for broken bar fault detection, 
the motor speed has to be acquired which represents the 
seventh term of (1). The eighth and final term of (1) is the 
developed motor torque and is used to help in the process of 

fault detection due to the mechanical load variations under 
healthy and faulty operating conditions. It is of importance to 
mention here that the whole process of generating the 
database is accomplished in an a priori manner off-line, after 
which the database is further used for on-line condition 
monitoring and fault diagnostics. It should be pointed out that 
the CMV can be a k-dimensional vector, where k represents 
the number of required indices (signatures) used for fault 
diagnostics of various kinds. Here, in this work, 8k = . The 
advantage of this approach is that if one of the member 
indices of the CMV was unable to detect the presence of a 
fault, say the frequency spectrum sideband approach, another 
member of the CMV, say the pendulous oscillation swing 
angle may be able to detect such a fault with a higher degree 
of certainty. In addition, unbalanced voltage power supply or 
mechanical load variations which may cause a false 
indication of fault can be avoided because for example such a 
voltage unbalance will show up in the acquired physical on-
site data. 

III. AI-BASED STATISTICAL MACHINE LEARNING APPROACH 

An AI-based statistical machine learning approach is 
employed to train (learn) the TSFE simulated healthy and 
faulty CMVs using Gaussian Mixture Models (GMMs) 
approach [24] followed by the classification of the test 
(experimental) data based on the trained (learned) GMMs 
using a Bayesian maximum likelihood classifier [24]. The 
CMV computed from a set of current and voltage waveforms 
will only generate a single set of CMV, which will appear to 
be a single point in the k-dimensional space. To generate 
more data points for the training and classifying processes, a 
set of CMV is calculated for each complete ac cycle of the 
motor’s current and voltage waveforms. Accordingly, the 
CMV of (1) will be expressed in matrix form of dimension 
k l× , again where k represents the number of required indices 
(signatures) used for fault diagnostics, and l represents the 
number of complete ac cycles of the current and voltage 
waveforms. This means that there will be l data points in the 
k-dimensional space. 

To categorize the TSFE simulated CMVs into different 
classes (healthy and faulty) using the GMMs approach, the 
algorithm must learn the GMM probability distribution for 
each class, which is defined as follows [24]: 
 

( ) ( ) ( )
1 1

; ,
M M

m m m m m
m m

p x w p x w N x µ
= =

= = Σ∑ ∑          (2) 
 
where, x represents a point in the k-dimensional space, M is 
the number of mixtures, ( ); ,m mN x µ Σ  is a normal distribution 
with mean, mµ , and covariance matrix, mΣ , and mw  is the 
mixture weight having the constraint of 1mw =∑ , [24]. The 
number of mixtures, M, can be determined based on the 
classification accuracy which tends to increase with the 
increased number of mixtures, provided there is sufficient 
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data to train on the GMM. The parameters for the GMM of 
(2) can be estimated using the well-known Expectation-
Maximization (EM) method [25]. This iterative method 
yields a Maximum Likelihood estimate, through the 
estimation formulas, defined as follows: 
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After learning a GMM for each TSFE simulated CMV 

class (healthy and faulty), the next step is to classify the test 
data for healthy and faulty conditions based on the trained 
(learned) GMMs. This is done using a Bayesian maximum 
likelihood classifier, which computes the conditional 
likelihoods of the test data under each trained model and 
selects the model with the highest likelihood. The likelihoods 
are computed on a point-by-point basis from the trained 
models, as follows [24]: 
 

( ) ( )
1

| |
l

i j i
j

p c p x c
=

=∏X                     (4) 

 
where, X  is a CMV matrix of the test data, x j  is a point in 

the k-dimensional space , and ( )x |j ip c  is the probability of 

x j  given the thi class and is calculated using (2). The 
classification is: 
 

( )ˆ arg max | i
i

c p c= X                      (5) 

 
where, ĉ  is the maximum likelihood class. For further details 
on this AI-based machine learning approach, [24] should be 
consulted. 

IV. TSFE SIMULATION RESULTS 

The time-stepping Finite-Element (TSFE) simulation 
results of the 2-hp induction motor are presented here. They 
were carried out for the cases of healthy, one, three, and five 
broken bars. The motor is energized from a three-phase 230- 
volt source where the motor is parallel connected for that 

level of voltage. For purpose of illustrations, a three-
dimensional trajectory comprising three member indices of 
the CMV generated from TSFE simulations for the broken 
bar conditions is shown in Fig. 4. These three member indices 
are the swing angle, BBδ∆ , the frequency low sideband 
component, ( )LSBA f , and the ratio of the negative and positive 
sequence components of the stator currents, n pI I . 

One can observe the trajectory profile in terms of the BBδ∆  and 
( )LSBA f  as the number of broken bars increases. These TSFE 

simulated CMVs are introduced into the AI-based statistical 
machine learning environment from which the nature of these 
CMVs is trained and used for classification, as presented in the 
next section. 

V.     EXPERIMENTAL RESULTS 

A 2-hp, 2-pole, 230-volt, three-phase induction motor was 
tested in the laboratory under broken bar fault conditions. A 
test setup of the induction motor system is shown in Fig. 5. 
The experimental CMVs of the 2-hp induction motor under direct-
line utility grid excitation were obtained in a similar operating 
condition as the TSFE simulations, which are the healthy, one, 
three, and five broken bars. The CMVs were computed using the 
negative sequence concept, the frequency spectrum sideband 
technique, and the pendulous oscillation method as described in 
(1).  

Again, for illustration purposes, a three-dimensional trajectory 
of the CMV from simulation and test results under healthy (Hsim 
and Htest) and rotor broken bar (BB) fault conditions in the CMV 
coordinate frame of reference is shown in Fig. 6. Inspection of Fig. 
6 reveals that the test and simulation results yield trajectories of 
similar trend and nature.  Also, one can observe that the simulation 
and test results are in good agreement in terms of the swing angle, 

BBδ∆ , and the frequency low sideband component, ( )LSBA f , but 
 

 
Fig. 4.  Three-dimensional trajectory of the rotor broken bar faults in the 

CMV coordinate frame of reference. 

 Healthy 

 1 Broken Bar 

3 Broken Bars 

5 Broken Bars 
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Motor PWM Drive Utility 
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Dynamometer

Current Sensors  
Fig. 5.  Laboratory test setup. 

 

 
Fig. 6.  Three-dimensional trajectory of the rotor broken bar faults in the 

CMV coordinate frame of reference (Simulation and Test). 
 
not for the case of the ratio of negative and positive sequence 
components of the stator currents, n pI I , under healthy condition. 
One would argue that the test results should have yielded an index 

n pI I  that should be zero for the rotor broken bar conditions, even 
for the healthy condition. But this is not the case here since this 
non-zero n pI I  is caused by the inherent motor winding structural 
imperfections which results in asymmetry of the winding currents. 
This is largely due to the nature of the “random type winding” of 
this class of motors. 

As mentioned earlier, this paper develops an AI-based 
statistical machine learning technique to classify the type of 
fault and to predict its severity of the test data based on the 
trained models where the data were obtained from the TSFE 
simulations. The diagnostic results based on the probability 
distributions of the test data are given in Table I. As one can 
observe from Table I that the AI technique accurately detect 
and classify the type of fault by computing the highest proba- 

 

TABLE I 
PROBABILITY DISTRIBUTIONS OF TEST DATA 

Test Data 
Classes 

Healthy 1 BB 3 BB 5 BB 

Healthy 0.725 0.640 0.589 0.416 

1 BB 0.688 0.989 0.616 0.522 

3 BB 0.548 0.746 0.945 0.708 

T
SF

E
 T

ra
in

in
g 

D
at

a 

5 BB 0.459 0.516 0.656 0.997 

 
bility of each of the classes (healthy, one broken bar, three 
broken bars, and five broken bars) of the test data in 
correspondence to those of the training data. 

VI. CONCLUSIONS AND FUTURE WORK 

An effective and robust diagnostic method for broken bar 
fault conditions has been introduced and examined in this 
paper for a 2-hp induction motor. This technique makes use 
of a Condition Monitoring Vector Database approach, which 
generates a database of condition monitoring vectors using 
time-stepping Finite-Element method. The TSFE simulation 
and test results show the distinct trajectory profile in the 
CMV coordinate of reference as the number of broken bars 
increases. Also, both the simulation and test results are in 
good agreement as far as the swing angle and the frequency 
low sideband components are concerned. In addition, the AI-
based statistical machine learning approach is able to 
accurately detect and distinguish the broken bar faults and the 
severity. 

Using a database for fault diagnostics is worthwhile and 
appropriate for integral and large horsepower electric motor-
drive systems which enable a wide range of possible motor-
drive fault scenarios to be modeled a priori to field 
deployment of the motor-drive system. Moreover, this 
CMVDB approach is able to detect different types of faults as 
long as the correct index is being used in the CMVDB. One 
of the possible future work is to detect stator winding inter-
turn fault conditions using this proposed approach. Besides 
that, the work can be extended to fault prognostics in a sense 
that by monitoring the trajectory of the fault in the CMV 
coordinate reference frame, one can possibly predict the 
progression of the fault severity, and prognosticate as to when 
such severity might become intolerable for continuous 
operation.  
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