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Abstract—A new method for analyzing time series data is introduced in this paper. Inspired by data mining, the new method employs

time-delayed embedding and identifies temporal patterns in the resulting phase spaces. An optimization method is applied to search

the phase spaces for optimal heterogeneous temporal pattern clusters that reveal hidden temporal patterns, which are characteristic

and predictive of time series events. The fundemantal concepts and framework of the method are explained in detail. The method is

then applied to the characterization and prediction, with a high degree of accuracy, of the release of metal droplets from a welder. The

results of the method are compared to those from a Time Delay Neural Network and the C4.5 decision tree algorithm.

Index Terms—Temporal pattern identification, time series analysis, data mining, time delay embedding, optimization clustering, and

genetic algorithms.
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1 INTRODUCTION

1.1 Problem Statement

CONSIDER a time series

X ¼ xt; t ¼ 1; . . . ; Nf g;

where t is the time index and N is the total number of
observations. Such a time series being examined often
contains events of interest, and we wish to discover them in
a timely manner. For instance, investors want to predict the
future value of certain securities. One of the approaches is
to identify time-ordered structures (called temporal pat-
terns) in the time series that are characteristic and predictive
of the events of interest.

Fig. 1 illustrates an example problem. The time series
represents simulated seismic activity generated from a
randomly occurring synthetic earthquake contaminated
with a noise signal. The square markers indicate events of
interest. The temporal patterns that are predictive of the
events of interest are a prototype of the subsequences of the
time series consisting of data points before the events.

However, in a variety of applications, many of the
significant temporal patterns are unobvious, contaminated
with noise, or hidden in the data and, hence, are difficult to
identify using traditional time series analysis methods, such
as the well-known Box-Jenkins method. The Box-Jenkins
method is limited by the requirement of stationarity of the
time series, and normality and independence of the
residuals [1]. For real-world time series such as welding
droplet releases and stock market prices, the stationarity
and independence conditions are not met.

New research has been devoted to the finding of
innovative methods for the identification of temporal
patterns that characterize the events of interest in the time
series. Among them, data mining is one of the promising
technologies dealing with temporal pattern identification in
the time series.

1.2 Review of Data Mining in Time Series

As an emerging discipline, data mining is the process of
discovering useful patterns in data that are hidden and
unknown in normal circumstances. It stems from several
fields, including machine learning, statistics, and database
design [2]. It uses techniques, such as, clustering, associa-
tion rules, visualization, and probabilistic graphical depen-
dency models to identify hidden, and useful structures in
large databases [2], [3]. The patterns of the data being
discovered are in a variety of formats, including spatial and
temporal patterns.

Weiss and Indurkhya define data mining as “the search
for valuable information in large volumes of data. Pre-
dictive data mining is a search for very strong patterns in
big data that can generalize to accurate future decisions
[2].” Similarly, Cabena et al., define it as “the process of
extracting previously unknown, valid, and actionable
information from large databases and then using the
information to make crucial business decisions [4].”

Others who have applied data mining concepts to
finding patterns in time series include Berndt and Clifford
[5], Keogh and Smith [6], [7], [8], Rosenstein and Cohen [9],
Guralnik et al. [10], Faloutsos et al. [11], Yi et al. [12],
Agrawal et al. [13], and Faloutsos et al. [14]. Berndt and
Clifford use a dynamic time warping technique taken from
speech recognition. Their approach uses a dynamic pro-
gramming method for aligning the time series and a
predefined set of templates.

Rosenstein and Cohen [9] also use a predefined set of
templates to match a time series generated from robot
sensors. Instead of using the dynamic programming
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methods as in [5], they employ the time-delay embedding
process to match their predefined templates.

Similarly, Keogh and Smith represent the templates using
piecewise linear segmentations. “Local features such as
peaks, troughs, and plateaus are defined using a prior
distribution on expected deformations from a basic template
[6].” Keogh and Smith’s approach uses a probabilistic method
for matching the known templates to the time series data.

Guralnik et al. [10] have developed a language for
describing temporal patterns (episodes) in sequence data.
They have developed an efficient sequential pattern tree for
identifying frequent episodes. Their work, like that of
others discussed here, focuses on quickly finding patterns
that match predefined templates.

It should be pointed out that the approaches proposed in
[5], [6], [7], [8], [9], [10] require a priori knowledge of the
structures or temporal patterns to be discovered and
represent these temporal patterns as a set of templates.

Faloutsos et al. [11], [14], Yi et al. [12], and Agrawal et al.
[13] have developed highly efficient, with respect to time
and space, algorithms for extracting similar subsequences
based on a given query from a sequence database. Their
initial work [13] uses the Discrete Fourier Transform to
generate a small set of Fourier coefficients for efficient
indexing. Faloutsos et al. [11], [14] and Yi et al. [12] extend
this work by integrating r*-tree (a spatial access method)
and dynamic time warping techniques.

1.3 Outline of the Proposed Method

Inspired by concepts in data mining and dynamical
systems, this paper introduces a new method for identify-
ing temporal patterns in time series that are significant for
characterizing and predicting events, i.e., the important
occurrences. The new method is capable of characterizing
temporal patterns of complex time series, which are often
nonperiodic, irregular, and chaotic. This method identifies
predictive temporal structures in reconstructed phase
spaces [15], [16]. A genetic algorithm searches such phase
spaces for optimal heterogeneous (varying dimension)
clusters that are predictive of the desired events.

The framework, initially introduced in [17], differs
fundamentally from the approaches mentioned above.
Instead of predefining the temporal patterns subjectively,
the method applies an optimization approach to search for
the optimal temporal patterns, which match the specific
goal of the problem. This is accomplished by defining a
problem specific event characteristic function gð�Þ to

formalize the concept of eventness. The search is performed
in reconstructed phase spaces created using time-delayed
embedding [15], [16]. In the optimization, a genetic
algorithm is used to search for points in the phase space
that are predictive of the events of interest.

There are several significant features of the proposed
method. First, the method focuses on the identification of
the temporal patterns that are characteristic of the events.
Second, with the temporal patterns identified, the new
method focuses on event prediction rather than complete
time series prediction. This allows the prediction of
complicated time series events such as the release of metal
droplets from a welder. Third, the objective function in the
optimization reflects the goal of the time series being
examined, i.e., droplet releases, and is problem specific.

A brief outline of the method is given here, with a
detailed description presented in the following sections.
Given a training time series X ¼ xt; t ¼ 1; . . . ; Nf g, the
method is as follows:

Step A. The time series X is unfolded [15] into IRQ—a
reconstructed phase space, called simply phase space
here—using time-delayed embedding [15], [18], [19]. The
unfolding mechanism maps X into IRQ. Specifically, a set of
Q time series observations xtÿ Qÿ1ð Þ� ; . . . ; xtÿ2� ; xtÿ� ; xt

� 	
taken from X map to

xt ¼ xtÿ Qÿ1ð Þ� ; . . . ; xtÿ2� ; xtÿ� ; xt
ÿ �T

;

where xt is a column vector or point in the phase space, � is
the time delay, and t is an integer in the interval
Qÿ 1ð Þ� þ 1; N½ �.

Step B. A real valued function g xtð Þ, the so-called “event
characterization function,” is defined and associated with
each phase space point xt. The event characterization
function represents the value of future “eventness” for the
phase space point xt.

Step C. Construct a heterogeneous (in the sense that Q
may take multiple values) collection of temporal pattern
clusters C�, such that, C� is the optimizer of the objective
function f, where a temporal pattern cluster P is defined
as a ball consisting of all points within a certain distance
� of a temporal pattern p in the aforementioned IRQ

phase space and the temporal pattern p is a Q� 1 vector
in the same IRQ phase space. The objective function f
maps a collection of temporal pattern clusters C onto the
real line, thereby providing an ordering to collections of
temporal pattern clusters according to their ability to
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characterize events. The objective function f is constructed
in such a manner that its optimizer C� is predictive of the
events of interest. An event is then predicted whenever a
phase space point xt formed from a set of Q time series
observations xtÿ Qÿ1ð Þ� ; . . . ; xtÿ2� ; xtÿ� ; xt

� 	
is within one of

the temporal pattern clusters P that comprise C�.
In the next section, the important concepts of the method

are presented in detail. In Section 3, the framework is
presented and a clarifying example is discussed. Section 4
presents the application of our method to the prediction of
welding droplet releases1 and these results are compared
with those obtained using the C4.5 decision tree algorithm
[20] and a time delayed neural network (TDNN) [21]. The
final section summarizes the results and discusses future
directions.

2 FUNDAMENTAL CONCEPTS

2.1 Event, Temporal Pattern, and Temporal
Pattern Cluster

In a time series, an event is an important occurrence.
Importance is application dependent. In a seismic time
series, for instance, an earthquake is defined as an event, as
illustrated in Fig. 1. Other examples of events include sharp
rises or falls of a stock price or the release of a droplet of
metal from a welder.

Fig. 2 shows the synthetic seismic time series with
contaminating noise. Recall that a temporal pattern p is a
Q� 1 vector in IRQ. The temporal pattern that is hidden in
the synthetic seismic time series is highlighted. Because of
the noise, the temporal pattern does not perfectly match the
time series observations that precede events. To overcome
this limitation, a temporal pattern cluster is employed to
capture the variability of a temporal pattern. A temporal
pattern cluster P is defined as a neighborhood of p,
consisting of all points within a certain distance � of p.
Hence, P ¼ a 2 IRQ : d p; að Þ � �

� 	
, where d is the distance

metric defined on the space.
The observations

xtÿ Qÿ1ð Þ� ; . . . ; xtÿ2� ; xtÿ� ; xt
� 	

form a subsequence of the time series X that can be
compared to a temporal pattern, where xt represents the
present observation and xtÿ Qÿ1ð Þ� ; . . . ; xtÿ2� ; xtÿ� past ob-
servations. Let � > 0 be a positive integer. If t represents the
present time index, then tÿ � is a time index in the past,
and tþ � is a time index in the future. Using this notation,
time is partitioned into three categories: past, present, and
future. Temporal patterns and events are placed into these
different time categories. Temporal patterns occur in the
past and complete in the present. Events occur in the future.

The next section presents the concept of a phase space,
which allows subsequences of time series to be easily
compared to temporal patterns.

2.2 Phase Space and Time-Delay Embedding

A reconstructed phase space [15], [18], [19], is a Q-
dimensional metric space into which a time series is unfolded.
Takens showed that if Q is large enough, the phase space is
homeomorphic to the state space that generated the time
series [22]. Takens’ Theorem provides the theoretical justifi-
cation for reconstructing state spaces using time-delay
embedding. Takens proved that the state space of an
unknown system can be reconstructed [16], [22].

If the embedding is performed correctly, Takens’
Theorem guarantees that the reconstructed dynamics are
topologically identical to the true dynamics of the system.
Therefore, the dynamical invariants also are identical [23].
Hence, given a time series X, a state space topologically
equivalent to the original state space can be reconstructed
by a process called time-delay embedding [15], [16].

It is important to note that the time-delay embedding
process does not necessarily create an embedding. A
sufficient condition for the phase space to be an embedding
of the state space from which X was sampled is that Q is
greater than twice the dimension of the original state space
[22]. If the phase space is not an embedding of the original
state space, it is an immersion.

The difficulty in the time-delay embedding process is in
estimating Q, the original state space dimension. Estimating
Q is more difficult when the original time series contains
both stochastic and deterministic signals since the stochastic
component may require that Q be infinite. However, as
shown in [15], [17], [23], [24], useful information can be
extracted from the reconstructed state space even if its
dimension is less than 2mþ 1, where m is the dimension of
the state space of the original system.
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The dynamics of the reconstructed state spaces can
contain the same topological information as the original
state space. Therefore, characterizations and predictions
based on the reconstructed state spaces can be as valid as
those from the original state space.

Fig. 3 illustrates the two-dimensional phase space
generated by time-delay embedding the time series X from
Fig. 2. Also, presented are the temporal pattern and
temporal pattern cluster. Although our algorithm places
no restriction on Q, for illustrative purposes Q is set to two
in Fig. 3.

Although a single temporal pattern cluster is illustrated

in Fig. 3, the proposed method can easily model irregularly

shaped regions with a collection of temporal pattern

clusters. Such a region may be required for patterns that

depend on some (but not all Q) points in the past. The

proposed method can overcome this problem by discover-

ing collections of temporal pattern clusters that approx-

imate hyperplanes parallel to the phase space axes that are

not predictive of the event. If the subset of the previous Q

points, which are predictive of an event, is variable, the

search problem is harder, but still possible. The proposed

method simply discovers each possible predictive structure.
To determine how well a temporal pattern characterizes

an event requires the concept of an event characterization
function as introduced in the next section.

2.3 Event Characterization Function

In order to correlate a temporal pattern (past and present)

with an event (future), the event characterization function g �ð Þ
is introduced. The event characterization function represents

the value of future “eventness” for the present time index. The

event characterization function is defined a priori and is

created to address the specific goal of the time series being

considered. The event characterization function is defined

such that its value at time t correlates highly with the

occurrence of an event at some specified time in the future.
For the time series illustrated in Fig. 1, the goal is to

predict occurrences of synthetic earthquakes. One possible
event characterization function to address this goal is
g xtð Þ ¼ xtþ1, which captures the goal of characterizing
synthetic earthquakes one-step in the future. Alternatively,
predicting an event three time-steps ahead requires the

event characterization function g xtð Þ ¼ xtþ3. A more com-
plex event characterization function that would predict an
event occurring one, two, or three time-steps ahead is
g xtð Þ ¼ max xtþ1; xtþ2; xtþ3f g.

The choice of g can significantly affect the results of the

method. For example, the selection of the event character-

ization function g xtð Þ ¼ xtþ3, for the synthetic earthquake

problem presented in Fig. 1 will yield poor prediction

results, as no predictive structure exists three time steps

before the event. However, the converse problem of using

g xtð Þ ¼ xtþ1 when the predictive structures exist three time

steps before the events is not as difficult to resolve. The

method will find a collection of temporal pattern clusters

that ignores the first two time steps, while focusing on the

third time step.

In practice, the selection of g has required little attention,

as good solutions to the prediction problems we have

studied have been achieved without adjusting g. We have

found that the event characterization function g xtð Þ ¼ xtþ1

is a good starting point.

2.4 Augmented Phase Space

The concept of an augmented phase space follows from the
definitions of the event characterization function and the
phase space. The augmented phase space is a Qþ 1
dimensional space formed by extending the phase space
with g �ð Þ as the extra dimension. Every augmented phase
space point is a vector < xt; g xtð Þ >2 IRQþ1.

Fig. 4, a stem-and-leaf plot, shows the augmented phase
space for the synthetic seismic time series. The height of the
leaf represents the value of g �ð Þ for xt. From this plot, the
required temporal pattern and temporal pattern cluster are
easily identified.

Identifying the optimal temporal pattern cluster in the
augmented phase space requires the formulation of an
objective function, which is discussed in the next section.

2.5 Objective Function

The objective function represents the efficacy of a collection
of temporal pattern clusters to characterize events. The
objective function f maps a collection of temporal pattern
clusters C onto the real line, thereby providing an ordering
to collections of temporal pattern clusters according to their
ability to characterize events. The objective function f is
constructed in such a manner that its optimizer C� is
predictive of the events of interest.

Fig. 4 illustrates the requirement of an objective function.
The collection of temporal pattern clusters C1 that contains
the single temporal pattern cluster P1 is obviously the best
collection for identifying events, while the collection of
temporal pattern clusters C2 that contains the single
temporal pattern cluster P2 is not. The objective function
must map the collection of temporal pattern clusters such
that f C1ð Þ > f C2ð Þ.

The form of the objective functions is application
dependent, and several different objective functions may
achieve the same goal. We next present three example
objective functions. The first is based on the familiar t-test
for the difference between two independent means [25] and
is useful for identifying a single temporal pattern cluster
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that is statistically significant. The second objective function
is useful for minimizing false positive predictions. The third
example objective function is useful for maximizing
classification/prediction accuracy.

2.5.1 Objective Function Based on the t-Test

The first objective function is the t-test for the difference
between two independent means [25] and is useful for
identifying a single temporal pattern. In other words, the
specific format of the objective function is the statistical
value, which is useful for identifying statistically significant
temporal pattern clusters with a high average eventness.

Let the cardinality of P be defined as

c Pð Þ ¼
X
xt2P

1;

and the cardinality of ~PP be defined as

c ~PP
ÿ �
¼
X

xt =2 P
1;

where ~PP ¼ xt : xt =2 Pf g. Let the average value of g, also
called the average eventness, of the phase space points in
the temporal pattern cluster P be

�P ¼
1

c Pð Þ
X

xt 2 P
g xtð Þ:

Let the average eventness of the phase space points not in
P be

� ~PP ¼
1

c ~PP
ÿ � X

xt =2 P
g xtð Þ:

Let the average eventness of all phase space points be
given by

�xt ¼
1

N ÿ Qÿ 1ð Þ�
X

g xtð Þ;

where Qÿ 1ð Þ� is the largest embedding time-delay, and N
is the number of observations in the time series.
Let the corresponding variances be

�2
P ¼

1

c Pð Þ
X

xt 2 P
g xtð Þ ÿ �Pð Þ2;

�2
~PP
¼ 1

c ~PP
ÿ � X

xt =2 P
g xtð Þ ÿ � ~PP

ÿ �2
;

and

�2
xt
¼ 1

N ÿ Qÿ 1ð Þ�
X

g xtð Þ ÿ �xtð Þ2:

We define the objective function as

f Pð Þ ¼ �P ÿ � ~PPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
P

c Pð Þ þ
�2

~PP

c ~PPð Þ

r :

This objective function is useful for identifying the temporal
patterns present in the synthetic seismic time series
illustrated in Fig. 2. It is also useful for identifying temporal
pattern clusters hidden in financial time series.

2.5.2 Objective Function to Minimize False Positives

Whereas the first objective function presented above is
useful for finding a single statistically significant temporal
pattern cluster, the next objective function is useful for
finding a single temporal pattern cluster that minimizes the
incorrect positive predictions. It is useful in prediction
problems where the events belong to various classes. This
objective function will be used in the prediction of welding
droplet releases where a particular time index of the time
series either is or is not a released droplet. It is used in
combination with the third objective function presented
below.

The second objective function is

f Pð Þ ¼ tp

tpþ fp ;

where the values tp, tn, fp, and fn are described in Table 1
for the case of binary classes. It is the positive accuracy of a
temporal pattern cluster in predicting events.

This objective function can be used in combination with
the next objective function as an intermediate step in
finding a collection of temporal pattern clusters that
maximize prediction accuracy.

2.5.3 Objective Function to Maximize Characterization/

Prediction Accuracy

The following objective function is useful for classification
and prediction problems where accuracy of prediction is of
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primary importance and the events of interest belong to
various classes. It is used to determine the efficacy of a
collection of temporal pattern clusters in total prediction
accuracy.

The third objective function is

f Cð Þ ¼ tpþ tn
tpþ tnþ fpþ fn ;

where C is a collection of temporal pattern clusters. It has an
optimal value when the class of every event is correctly
predicted.

3 FRAMEWORK OF THE METHOD

Now, with the fundamental concepts explained, this section
shows how the proposed method, outlined previously in
Section 1.3—Outline of the Proposed Method, is expanded
to provide a framework for identifying temporal patterns
predictive of the events of interest. The framework is then
applied to the example problem of predicting synthetic
earthquakes in the time series illustrated in Fig. 1.

3.1 The Method

The basic concept of applying the new method is that it
forgoes the need to characterize time series observations at
all time indices for the advantages of being able to identify
the optimal temporal pattern clusters for the important
events. This allows for the prediction of complex real-world
time series using phase spaces with minimal dimensions.

The first step in applying the method is to define the
goal, which is specific to each application, but may be stated
generally as follows: Given an observed time series
X ¼ xt; t ¼ 1; . . . ; Nf g, the goal is to find hidden temporal
pattern clusters that are characteristic of events in X, where
events are specified in the context of the goal. Likewise,
given a testing time series Y ¼ xt; t ¼ R; . . . ; Sf g, the goal is
to use the hidden temporal pattern clusters discovered in X
to predict events in Y.

Fig. 5 presents a block diagram of the method. Given a
goal, a training portion of the time series to be character-
ized, and the testing portion of the time series to be
examined, the steps in the method are:

1. Training Stage (Batch Process).

a. Model the goal in terms of the event character-
ization function g �ð Þ and objective function f, and
formulate it into the a constrained optimization
problem.

b. Determine the range of Q, i.e., the dimensions of
the phase spaces and the lengths of the temporal
patterns. Assign the value of � .

c. (Step A in Section 1.3 —Outline of the Proposed
Method). The time series X is unfolded, which is
defined in [15], into IRQ—a reconstructed phase
space—using time-delayed embedding [15], [18],
[19].The unfolding mechanism maps X into IRQ.
Specifically, a set of Q time series observations

xtÿ Qÿ1ð Þ� ; . . . ; xtÿ2� ; xtÿ� ; xt
� 	

taken from X map to

xt ¼ xtÿ Qÿ1ð Þ� ; . . . ; xtÿ2� ; xtÿ� ; xt
ÿ �T

;

where xt is a column vector or point in the phase

space, � is time delay, and t is an integer in the

interval Qÿ 1ð Þ� þ 1; N½ �.
d. (Step B in Section 1.3—Outline of the Proposed

Method). Form the augmented phase spaces. A
real valued function g xtð Þ, the so-called “event
characterization function,” is defined and asso-
ciated with each phase space point xt. The event
characterization function represents the value of
future “eventness” for the phase space point xt.

e. (Step C in Section 1.3—Outline of the Proposed
Method) Search for the optimal collection of
temporal pattern clusters in the augmented
phase space, where the collection is optimal in
the sense that it is the optimizer of the objective
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function. Construct a heterogeneous (in the
sense that Q may take multiple values) collec-
tion of temporal pattern clusters C�, such that C�
is the optimizer of the objective function f.

f. Evaluate training stage results. Repeat training if
necessary.

2. Testing Stage (Real Time or Batch Process).

a. Embed the testing time series into the phase
space.

b. Use the optimal collection of temporal pattern
clusters for identifying and predicting events.
An event is predicted whenever a phase space
point xt formed from a set of Q time series
observations xtÿ Qÿ1ð Þ� ; . . . ; xtÿ2� ; xtÿ� ; xt

� 	
is

within one of the temporal pattern clusters P
that comprise C�.

c. Evaluate testing stage results.

3.2 Search Process

There are two forms of the search. The first is for a single

optimal temporal pattern cluster. This is done using a

genetic algorithm. The second is for an optimal collection of

temporal pattern clusters. This is done using a greedy

method built upon the first form of the search.

3.2.1 Genetic Algorithm Search for a Single Optimal

Temporal Pattern Cluster

A variant of the well-known simple Genetic Algorithm
(sGA) [26] is employed here to search for a single optimal
temporal pattern cluster P �. The sGA is augmented with the
tabu search characteristic of storing previously evaluated
fitness values. Additionally, the initial population is created
though the elitist mechanism of generating a population of
size s � T , where T is the size of the desired population, and
taking the top 1=sth of the large generated population as the
initial population. This sGA variant has been previously
presented in [27], [28]. It uses a hash table to store
previously calculated fitness values, thereby achieving a
2-4x computational speedup without sacrificing accuracy.

The objective/fitness function used by the genetic
algorithm is designed to achieve the overall goal of the
framework. Applicable objective/fitness functions include

f Pð Þ ¼ �P ÿ � ~PPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
P

c Pð Þ þ
�2

~PP

c ~PPð Þ

r
and

f Pð Þ ¼ tp

tpþ fp ;

both of which were presented in the previous section.
The phenotype for the GA, P ¼ ½p � �, is encoded as a

binary string. The decoding of the genotype is defined as

pi ¼
pmax ÿ pmin

2l ÿ 1

Xlÿ1

j¼0

2jpi;j þ pmin;

where l is the length of the allele (subsequence of the
chromosome) used to encode pi, pmax ¼ maxX,

pmin ¼ minX;

and X is the training time series. The radius is defined as

� ¼ �max

2l ÿ 1

Xlÿ1

j¼0

2j�j;

where �max ¼ Q pmax ÿ pminð Þ and Q is the dimension of p.
A tournament of size two is used as the selection

mechanism. Mutation in the range of 0-0.05 percent is used.
The stopping criterion is convergence of the fitness values.
Elitism of one is employed.
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3.2.2 Greedy Search for an Optimal Collection of

Temporal Pattern Clusters

We search for a collection of optimal temporal pattern

clusters using a greedy approach. This is done to reduce the

dimensionality of the search. Let Qmin and Qmax be the

minimum and maximum time-delay embedding dimen-

sion, respectively. Let f Cð Þ be the objective function for the

collection of temporal pattern clusters. An example of such

an objective function is

f Cð Þ ¼ tpþ tn
tpþ tnþ fpþ fn ;

which was presented in the previous section. The greedy

search is performed as follows:

set i ¼ Qmin

while i � Qmax

search for an optimal temporal pattern

cluster P in the IRi phase space using the

genetic algorithm described above.
if f C [ Pf gð Þ > f Cð Þ then

set C ¼ C [ Pf gð Þ
remove all xt 2 P from the phase space

else

i ¼ iþ 1;

A problem with multiple classes of events can be solved

using the proposed method by searching for a family of

temporal pattern clusters, where each element of the family is

a collection of temporal pattern clusters predictive of a

particular event class.

3.3 An Example

This example illustrates how the framework is applied to

the synthetic seismic time series illustrated in Fig. 1. We

define the goal to be to identify a single temporal pattern

cluster predictive of the large spikes in the time series, e.g.,

the “earthquakes.”

3.3.1 Training Stages

Step 1—Model the Goal.

Since the goal is to identify a single temporal pattern cluster

predictive of the synthetic earthquakes, the event character-

ization function is g xtð Þ ¼ xtþ1, which allows one-step

prediction. Since the temporal pattern cluster that char-

acterizes the events is to be statistically significant from

other temporal patterns, the objective function used is

f Pð Þ ¼ �P ÿ � ~PPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
P

c Pð Þ þ
�2

~PP

c ~PPð Þ

r ;

which orders temporal pattern clusters according to their

ability to statistically differentiate between events and

nonevents. The optimization formulation is: max f Pð Þ.
Step 2—Determine Temporal Pattern Length.
The value of Q, i.e., the length of the temporal pattern and

the dimension of the phase space, is selected based on

Takens’ Theorem, which states that if Q ¼ 2mþ 1, where m

is the original state space dimension, the reconstructed

phase space is guaranteed to be topologically equivalent to

the original state space. Since Takens’ Theorem provides no

mechanism for determining m, using the principle of

parsimony, temporal patterns with small Q are examined
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Fig. 8. Cartoon of a welder.

Fig. 9. Stickout and release time series.



first. For this example, Q ¼ 2, which allows a graphical

presentation of the phase space.
Step 3—Unfold the Training Time Series into the Phase

Space.

For this example, the time series X is embedded into the phase

space using the time-delay embedding process where each

pair of sequential points ðxtÿ1; xtÞ in X generates a two-

dimensional phase space point, as illustrated in Fig. 3. The

value of � is set to one. The Manhattan or l1 distance [29] is

chosen as the metric for this phase space. Given two points y

and z in IRQ, the l1 distance between the two points is

d y; zð Þ ¼
XQ
i¼1

yi ÿ zij j:

Step 4—Form Augmented Phase Space.

The next step is to form the augmented phase space by

augmenting the phase space with the extra dimension g �ð Þ,
as illustrated by Fig. 4. The vertical lines represent the

dimension g �ð Þ associated with the pairs of ðxtÿ1; xtÞ.
Step 5—Search for Optimal Temporal Pattern Cluster.
The next step is to find an optimal temporal pattern cluster.

In Fig. 6, the temporal pattern cluster found by our GA is

highlighted in the phase space. The “circle” P (recall the

phase space distance is Manhattan) in Fig. 6 has its center at

p with radius �.

3.3.2 Testing Stages

Step 1—Unfold the Testing Time Series into the Phase

Space.

The time series Y shown in Fig. 7 is unfolded into a two-
dimensional phase space.
Step 2—Predict Events.
The last step in our method is to predict events by applying
the discovered temporal pattern cluster to the testing phase
space. For this example, Fig. 7 clearly illustrates the
accuracy of the temporal pattern in predicting events. The
pair of connected gray squares that match subsequences of
time series observations before events is the temporal
pattern. The black squares indicate predicted events.

4 APPLICATION—WELDING DROPLET RELEASES

4.1 Problem Statement

In this section, our method of temporal pattern identifica-
tion is applied to the prediction of metal droplet release
events in the welding process [30]. Simply put, the welding
process joins two pieces of metal by forming a joint between
them. As illustrated in Fig. 8, a current arc is created
between the welder and the metal to be joined. Wire is
pushed out of the welder. The tip of the wire melts, forming
a metal droplet that elongates (sticks out) until it releases.

Predicting when a droplet of metal will release from a
welder allows the quality of the metal joint to be monitored
and controlled. The problem is to predict the releases using
a stickout time series. Samples of these time series are
presented in Fig. 9.

Sensors on the welding station generate the stickout of the

droplet measured in pixels by an electronic camera. It is

sampled at 1kHz and comprised of approximately 5,000 ob-

servations. The second time series indicates the release of the

metal droplets. The release time series indicates the events
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Fig. 10. Stickout time series (training).

Fig. 11. Recalbrated stickout and release time series (training).



with a one indicating an event and a zero indicating a

nonevent.

4.2 Training Results

The training stickout time series X consists of the 2,492

equally sampled observations, at t = 175 through 2,666.

Fig. 10 illustrates all observations, while Fig. 9 provides a

detailed view of a sample of the time series.
The stickout time series is preprocessed to remove the

large-scale artifact. Removing the trend transforms structu-

rally different temporal patterns into similar temporal

patterns. Without this transformation, testing accuracy is

lower and the method predicts few of the droplet releases.

This is done using a simple recalibration rule. When there is

a 10-pixel drop between two consecutive observations, the

second observation is recalibrated to zero. Figs. 11 and 12

illustrate that the trend in the stickout time series has been

removed in the postprocessed time series. It is important to

note that this preprocessing occurs online and incorporates

no future data into current prediction calculations.
The events are captured in the release time series Y, as

illustrated in Fig. 11. The release time series is defined as a

binary sequence, where the ones indicate a release (event)

and the zeros a nonrelease (nonevent).

Now that the training time series have been presented,

the goal to predict the release of a droplet is restated in

terms of the objective and event characterization functions.

The event characterization function is g xtð Þ ¼ ytþ1, which

allows one-step prediction. We search for an optimal

collection of temporal pattern clusters. Our method requires

one objective function for the greedy search for the

collection of temporal pattern clusters. The objective

function for the collection of temporal pattern clusters is
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Fig. 12. Recalibrated stickout time series (training).

Fig. 13. Sickout and release augmented phase space (training).

Fig. 14. Temporal patterns.



f Cð Þ ¼ tpþ tn
tpþ tnþ fpþ fn :

An objective function is also required for the identifica-

tion of individual temporal pattern clusters. This is the

fitness function used by our genetic algorithm. It is

f Pð Þ ¼ tp

tpþ fp :

Two parameter sets are used for the genetic algorithm.
For both sets, the initial population size multiplier s is 10,
the population size is 30, the elite count is one, the gene
length l is eight, maximum phenotype value pmax is 30,
minimum phenotype value pmin is ÿ2, and the tournament
size is two. The first parameter set has a mutation rate of
0 percent and convergence criterion of 0.65. The second set
has mutation rate of 0.05 percent and a convergence
criterion of 0.5.

The range of phase space dimensions Q is 1; 20½ � and � is
set to 1. Fig. 13 presents an illustrative two-dimensional
augmented phase space. The events are not separable from
the nonevents using a two-dimensional phase space.

The new method was run twice on the training time
series. The first run uses the first GA parameter set and
results in six temporal pattern clusters that vary in
dimension from one to 15. The second run uses the second
GA parameter set and results in eight temporal pattern

clusters that vary in dimension from one to six. Recall that
number and dimension of the temporal pattern clusters is
not predetermined, but rather a result of the method. The
temporal patterns are illustrated in Fig. 14.

Although Fig. 14 shows only the temporal patterns and

not the temporal pattern clusters, it provides insight into the

patterns in the stickout time series that precede the sharp

drop in stickout and consequent release. We see that the

peaks before the droplet release are of varying heights. We

also can see that similar peaks may be reached without a

droplet release as is illustrated by the longer temporal

patterns. This illustrates the complicated nature of predict-

ing welding droplet releases as was first observed in Fig. 13.
The result from the union of the two collections of

temporal pattern clusters is shown in Table 2. The table

contains 2,491 data points, which is one less than the

number of time series observations in the training time

series. This is because no data is used before the first

observation to predict it; hence, the first observation cannot

be categorized.

The statistics for accuracy indicate that 96.23 percent of

the observations in the training time series are correctly

predicted as events or nonevents. The positive accuracy

indicates that 71.13 percent of the release observations

predicted as events are events.
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TABLE 2
Recalibrated Stickout and Release Results (Training)

Fig. 15. Stickout time series (testing).

Fig. 16. Recalibrated stickout time series (testing).



4.3 Testing Results

The testing stickout time series, which is shown in Fig. 15,
consists of the 2,493 equally sampled observations, at t ¼
2; 667 through 5; 159. The recalibrated stickout time series
is shown in Fig. 16.

The illustrative two-dimensional augmented phase
space for the testing time series is seen in Fig. 17.

The results of applying the collection of temporal pattern
clusters discovered during the training phase to the testing
time series are seen in Table 3.

The prediction accuracy is 96.43 percent, and the positive
accuracy is 73.53 percent. These results are better than those
found in the training phase. They also indicate that
overtraining has not occurred.

4.4 Analysis and Comparison of Results with
TDNN and C4.5

In this section, we compare our method with a time delay
neural network (TDNN) [21] and the C4.5 decision tree
algorithm [20]. We also analyze the results for our method
along with the results from the TDNN and C4.5. Our

method’s results are much better than both the TDNN and

the C4.5 algorithm, especially for the test results for positive

prediction, e.g., correctly predicting droplet releases.
Both algorithms were provided with the same data set

used to train our method, that is the previous 15 values of

the stickout time series to predict the droplet release in the

next time step. Recall that our method as part of its

optimization process discovered a collection of temporal

pattern clusters. The maximum dimension of any of the

temporal pattern clusters contained in the collection was 15.

This indicates the number of previous values used in the

prediction of an event.
The TDNN has four layers with 15 neurons in the input

layer, 20 neurons in the first hidden layer, 100 neurons in

the second hidden layer, and one neuron in the output

layer. Sigmoid style activations functions are used in the

first three layers, and a threshold style is used in the output

layer. The TDNN was trained for 800 epochs.
The C4.5 tree has 53 nodes and 27 leaves. Table 4 shows

the results for the TDNN, C4.5, and the new method.
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Fig. 17. Recalibrated stickout and release augmented phase space (testing).

TABLE 3
Recalibrated Stickout and Release Results (Testing)

TABLE 4
Summary of Prediction Results for Various Methods



In comparing the three methods, we see that in the

training phase the C4.5 method performed best, whereas

the TDNN performed quite poorly. Its accuracy in predict-

ing events as events is less than 5 percent. The testing

results show the superiority of the new method. The testing

results are essentially equivalent to the training results for

the new method, indicating that the discovered temporal

pattern clusters are not artifacts of the training process, but

rather valid event predictors. On the other hand, both the

C4.5 and TDNN methods show substantially poorer results

in the testing phase. This is especially true when examining

the positive accuracy. The C4.5 method had a training

positive accuracy of almost 90 percent, but a testing positive

accuracy of less than 10 percent.

These results can be better understood by examining the

augmented phase spaces illustrated in Figs. 13 and 17.

Although showing only two time lags, it is obvious that

there is no simple, consistent pattern that allows for the

accurate prediction of events and nonevents. This is further

illustrated by the presentation of the discovered temporal

patterns in Fig. 14.

Using the stickout time series generated from a digital

camera on a welding station, the problem of predicting

when a droplet of metal will release from the welder is

solved with a high degree of accuracy: 96.43 percent total

prediction accuracy and 73.53 percent positive prediction

accuracy. These results demonstrated that the new method

could be used in an automated monitoring system of the

welding seam, thereby improving the quality of the weld.
The results can be applied to improving welds in two

ways. The first is by being able to tell how many droplets

have been laid down on the welding seam. The second
mechanism would be by using the welding droplet release
prediction as an input into a control system.

5 CONCLUSIONS

It can be seen that our novel method works very well in

characterizing and predicting complex time series events,

especially in comparison to other well-known methods.

The paper has presented the new framework including

the key concepts of event characterization function,

temporal pattern clusters, time-delay embedding, aug-

mented phase space, and objective function. This frame-

work has also been successfully applied to the financial

domain. The application to the financial domain yielded

greater than market investment returns, which were

statistically significant [17], [24], [31].

Future work will involve improving the accuracy by using

a system identification approach. This approach will identify

rather than predict droplet releases. Alternative eventness

functions also can be employed to improve accuracy. One

example is an event function that characterizes all events one

to five time steps ahead instead of in just one time step ahead.

Additional research will be conducted into the performance

improvements and scalability of the method, as well as the

condition in which our method will overtrain.
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