
2274 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 4, NOVEMBER 2013

Rotor Bar Fault Monitoring Method Based on
Analysis of Air-Gap Torques of Induction Motors

Aderiano M. da Silva, Member, IEEE, Richard J. Povinelli, Senior Member, IEEE, and
Nabeel A. O. Demerdash, Life Fellow, IEEE

Abstract—A robust method to monitor the operating condi-
tions of induction motors is presented. This method utilizes the
data analysis of the air-gap torque profile in conjunction with
a Bayesian classifier to determine the operating condition of
an induction motor as either healthy or faulty. This method is
trained offline with datasets generated either from an induction
motor modeled by a time-stepping finite-element (TSFE) method
or experimental data. This method can effectively monitor the
operating conditions of induction motors that are different in
frame/class, ratings, or design from the motor used in the training
stage. Such differences can include the level of load torque and
operating frequency. This is due to a novel air-gap torque nor-
malization method introduced here, which leads to a motor fault
classification process independent of these parameters and with no
need for prior information about the motor being monitored. The
experimental results given in this paper validate the robustness
and efficacy of this method. Additionally, this method relies exclu-
sively on data analysis of motor terminal operating voltages and
currents, without relying on complex motor modeling or internal
performance parameters not readily available.

Index Terms—Air-gap torque, broken bars, fault diagnostics,
Gaussian mixture models (GMMs), induction machines, mon-
itoring of induction motors, reconstructed phase space, speed
estimator, torque estimator.

I. INTRODUCTION

I NDUCTION motors are complex electro-mechanical
devices utilized worldwide as the main prime-movers in

industrial applications for the conversion of power from elec-
trical to mechanical form. Induction motors are highly reliable,
require low maintenance, and have relatively high efficiency.
However, such motors are susceptible to many types of faults in
industrial applications. A motor failure that is not identified in
an initial stage may become catastrophic to a process in which
the motor is the prime-mover and the induction motor may
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suffer severe damage. Such motor faults are due to mechanical
and electrical stresses. Mechanical stresses are caused by
frequent starts and stops, overloads, and abrupt load changes,
which can produce bearing faults and rotor bar breakages.
Meanwhile, electrical stresses are usually associated with the
power supply disturbances, frequent starts, and operation from
PWM drives, which can cause inter-turn short circuits in stator
winding turns/coils closest to the motor terminal, as well as
broken rotor bars and bearing problems.
Several techniques have been proposed over the years to

detect such motor faults [1]–[14]. A widely studied method
for motor fault detection is frequency spectrum analysis [4],
[6]–[9], [11], [13]. In [5], the effect of broken bars on the
air-gap torque was used as a fault indicator. However, manual
investigation of the torque profile was needed to classify the
motor as healthy or faulty. In [12], an online method to detect
broken bars based on comparisons of torques from a current
and a voltage model was presented. However, this method re-
quires rotor inductance and rotor resistance that are not readily
available and can vary with temperature. The rotor position
also needed to be measured by an encoder, which is not part
of many induction motor applications. Additionally, the motor
needed to be subjected to a set of acceleration cycles which is
not a practical task for online motor fault monitoring.
In [13], a comparison of motor fault monitoring methods in-

cluding PSA of one phase current, instantaneous power, and
torque was provided. The data obtained from these methods
were manually investigated to determine the motor operating
condition. In [14], a broken bar monitoring method based on
pattern recognition was presented. This method was used to
detect faulty motors even at no-load condition. However, this
method was tested with a 7-rotor bars/pole motor containing
three broken bars. That is more than 40% of broken bars per
pole. As discussed later in Section V, a higher percentage of
broken bars per pole produce a corresponding higher distur-
bance in the stator currents of a faulty motor. Thus, signifi-
cant current disturbance might be found for this particular motor
even at no-load condition. Additionally, the method of [14] re-
quires a new set of system signatures for each motor.
To address these limitations, a robust induction motor fault

monitoring technique based on data analysis of the air-gap
torque profile in conjunction with a statistical classifier tech-
nique to classify the operating condition of an induction motor
as either healthy or faulty is presented in this paper. This
method consists of two stages: 1) an offline training stage
and 2) an online monitoring stage. In the training stage, a
signature for the faulty case and a signature for the healthy case

1551-3203 © 2013 IEEE



DA SILVA et al.: ROTOR BAR FAULT MONITORING METHOD BASED ON ANALYSIS OF AIR-GAP TORQUES OF INDUCTION MOTORS 2275

are built from the air-gap torque signal obtained either from
time-stepping finite-element (TSFE) simulations [15], [16] or
experimental data. In the monitoring stage, the signature that
represents the operating condition of the actual induction motor
being monitored is constructed from the online torque signal
obtained from a torque estimator. This online signature is
compared with the signatures obtained during the training stage
in order to identify the actual operating condition of the test
motor as healthy or faulty. The signatures are Gaussian mixture
models (GMM) obtained from the Reconstructed Phase Space
(RPS) of the signals under investigation as described next.
No prior information about the monitored motor is needed to
classify the operating condition.
This is a one-time training method, i.e. once the two signa-

tures from the training set are obtained, one to represent the
healthy and one the faulty state, this method does not need fur-
ther training even when used in monitoring of other motors. A
novel torque normalization method allows these two signatures
from the training set to be used in the monitoring of the op-
erating conditions of other motors even at different levels of
load torque, operating frequencies, and different design spec-
ifications, including frame/class and ratings, from the motor of
the training set. Only motor parameters readily available are re-
quired for this trained method, and no mathematical models of
induction motors are required. This method yields a complete
solution, that is, it automatically acquires and computes signals,
and identifies the motor state as faulty or healthy without human
interpretation of the data. External or intrusive feedback devices
such as torque transducers and vibration sensors are not needed.
The motor is continuously monitored while in operation, with
no need to stop or apply any signal to the motor. The method
presented here is capable of detecting a single broken bar in a
motor with as high a number of bars per pole as 18, that is, it
can detect the operating condition of a motor with less than 6%
of broken bars per pole.
In Section II, torque and speed estimators used in the mon-

itoring stage, GMM and RPS used to build signatures, as well
as air-gap torque disturbances caused by broken rotor bars are
discussed. In Section III, the overall method is detailed. In
Section IV, the experimental verification of this monitoring
method is presented. This is followed by discussion of the
results and conclusions.

II. BACKGROUND

Here, the torque and speed estimators used in this monitoring
method, and the GMM and RPS used to build signatures are
described. In addition, a brief discussion of the effects of broken
rotor bars on the torque profile of an induction motor is given.

A. Air-Gap Torque Disturbances Due to Broken Rotor Bars

Broken rotor bars in induction motors produce torque mod-
ulations in both amplitude and frequency. These fundamentals
are used in the aforementioned torque normalization process,
which is a core portion of the presented monitoring method.
The air-gap torque (also called developed torque) profile of a

healthy induction motor is approximately constant as shown in
Fig. 1(a) and (d) for a 5-hp motor under 75% and 100% of the

Fig. 1. Air-gap torque signal of a three-phase, 5-hp, six-pole, 60-Hz, 460-V,
squirrel-cage induction motor. (a) 75% of rated torque under healthy condition
at 1177 r/min. (b) 75% of rated torque with two broken (2BB) bars at 1175 r/min.
(c) 75% of rated torque with four broken (4BB) bars at 1175 r/min. (d) Full load
under healthy condition at 1170 r/min. (e) Full load with two broken bars at
1165 r/min. (f) Full load with four broken bars at 1165 r/min.

rated load, respectively. Meanwhile, the air-gap torque profiles
of an induction motor with broken rotor bars is modulated in
amplitude and frequency as shown in Fig. 1(b), (c), (e), and (f).
The amplitude of the torque modulation in a faulty motor is

a function of the number of broken rotor bars and level of load
torque. First, as the number of adjacent broken bars increases,
the amplitude of the torque modulation also increases. The in-
crease in the torque amplitude modulation with the number of
adjacent broken bars can be observed in Fig. 1(b) and (c), which
are for two broken bars and four broken bars, respectively, both
at the same level of load torque, i.e. 75% of the rated torque.
The same effect is also observed from Fig. 1(e) and (f), for two
and four broken bars when the motor is operating at rated torque
(30 Nm). Second, an increase in the level of load torque yields
an increase in the amplitude of torque modulation of a motor
with broken bars. This effect can be observed by examination
of Fig. 1(b) and (e) when the motor operates at 75% and 100%
of rated torque, respectively, both with two broken bars, and
Fig. 1(c) and (f) when the motor operates at 75% and 100% of
rated torque, respectively, both with four broken bars.
Meanwhile, the frequency of the torque profile modulation,

which is , where is the slip and is the supply frequency,
clearly depends on the supply frequency and the load torque.
This load torque dependency is shown by comparison of
Fig. 1(b) with Fig. 1(e), as well as Fig. 1(c) with Fig. 1(f). For
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Fig. 2. Measured phase A current signal of a 3-phase, 5-hp, 6-pole, 60-Hz,
460-V, squirrel-cage induction motor. (a) 75% of rated torque under healthy
condition at 1177 r/min. (b) 75% of rated torque with two broken (2BB) bars at
1175 r/min. (c) 75% of rated torque with four broken (4BB) bars at 1175 r/min.
(d) Full load under healthy condition at 1170 r/min. (e) Full loadwith two broken
bars at 1165 r/min. (f) Full load with four broken bars at 1165 r/min.

instance, for Fig. 1(c) with a rotor speed of 1175 r/min
is r/min r/min Hz 2.5 Hz,
which means a period of 0.4 s as shown in this figure
when the motor is at 75% of the rated torque. Mean-
while, for Fig. 1(f) with a rotor speed of 1165 r/min
is r/min r/min Hz 3.5 Hz,
which means a period of 0.28 sec as shown in this figure when
the motor is operating at rated torque. Thus, the higher load
torque in Fig. 1(f) resulted in a slower rotor speed, a larger slip
frequency, and a shorter period of the torque profile modulation
in comparison to Fig. 1(c).
Additionally, the profile of the torque modulation is an

intrinsic characteristic of an induction motor, and it does not
change as its amplitude and frequency change.
Fig. 2 shows the experimentally measured phase A currents

used to estimate the air-gap torques illustrated in Fig. 1. Thus,
the six cases of experimentally measured phase A currents
shown in Fig. 2 correspond, respectively, to the six cases of
estimated air-gap torques shown in Fig. 1.

B. Air-Gap Torque Estimator

Here, a well-known air-gap torque estimator [5], [6], [17],
[18] based only on the three-phase stator terminal currents and
voltages of an induction motor without need of any internal per-
formance parameters is presented. This torque estimator is used

during themonitoring stage to estimate the air-gap torque profile
of the induction motor under fault monitoring. This is in order
to generate a signature that represents its present operating con-
dition that is used for the fault classification method discussed
in Section III.
The derivation of this torque estimator is given in detail in

[19]. The air-gap (developed) torque is expressed as

(1)

in which only two voltage sensors and two current sensors are
required to calculate the torque, where is the number of poles,
, , and are the stator phase current, and are line-to-

line stator voltages, and is the stator phase resistance. For a
Y-connected induction motor, is half of the line-to-line re-
sistance, , i.e., [5]. However, for a delta-con-
nected induction motor, . This equation yields the
air-gap torque profile of an induction motor that is very close
to the torque profile measured by a torque transducer with no
significant drifting.
Furthermore, this torque estimator relies on both measured

motor current and voltage signals, in which the voltage signals
are integrated to yield the flux linkages. The flux linkages are a
robust physical phenomenon that directly relate to the internal
magnetic conditions in a motor’s magnetic circuit and windings.
Thus, the results of the torque estimator has the effect of both in-
puts (currents) and outputs (flux linkages and torque) of a motor
which are closer to the physical condition inside a motor than
the currents alone as used in [11], [13].

C. Rotor Speed Estimator

In this monitoring method, the rotor speed of the actual test
motor is used to properly construct the online operating con-
dition signatures. The rotor speed can be either measured via
encoders or resolvers when available, or estimated. For the ex-
perimental results presented in this paper, the rotor speed was
estimated with a well-known sensor-less method called rotor
slot harmonics (RSH), because this approach is easily imple-
mentable and is relatively accurate [20], [21].

D. Reconstructed Phase Space

The signatures of the presented monitoring methods are
GMM obtained from the phase space reconstruction of the
signals under investigation.
Using a signal generated by a system, phase space recon-

struction creates a space equivalent, in the topological sense,
to the original state space of a system [22], [23]. In this work,
the signal is the air-gap torque, . The matrix represents the
system dynamics in the RPS. Accordingly, the trajectory of the
system dynamics is as follows:

...
. . .

...
...

(2)
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Fig. 3. RPS of healthy 2-hp motor with corresponding GMM with four
mixtures.

where is the sample of the air-gap torque, is the dimen-
sion of the RPS, is time delay or lag from the present obser-
vation [23]. The dimension is calculated using the false
nearest neighborhood (FNN) technique [23]–[25]. This tech-
nique counts the number of points in a RPS that are false nearest
neighbors, i.e. the points in the RPS that are projected near to
each other as opposed to being near because of the dynamics
of the system. The count of false nearest neighbors is given as
follows:

(3)

where is the distance between two points of the signal,
is the total number of data points of the signal, and is a

threshold. The number of false nearest neighbors is normalized
by the total number of points in the RPS yielding the percentage
of false nearest neighbors. This percentage is further compared
with another threshold, which typically assumes values between
0.001 and 0.01. This comparison yields the appropriated dimen-
sion of the RPS that represents the dynamics of the signal under
investigation.
The time lag is calculated using the automutual information

function, , which is given as follows [23], [24]:

(4)

where is the joint probability density for the sig-
nals and , and and are, respectively,
the probability densities for the signals and , which are
same the signal but delayed from each other by the time lag, .
The first minimum of (4) is chosen as the time delay used to re-
construct the phase space of the signal .
Using the FNN technique on air gap torque of a healthy 2-hp

induction motor signal yielded a dimension of three. Similarly,
the automutual information approached yielded a time lag of
five. The resulting RPS of this air-gap with and is
shown is Fig. 3.

Fig. 4. Offline motor fault signature learning algorithm.

A RPS is sampling frequency-dependent, i.e., if the same
signal is acquired with different sampling frequencies, and the
same time lag and dimension is used to build the RPS for both
signals, the resulting trajectories in the RPSs are not the same.
Thus, signal classification approaches based on RPS must per-
form sampling frequency normalization.

E. Gaussian Mixture Models

A GMM is an approach used for density estimation [26]. A
GMM with mixtures is defined as follows:

(5)

where is the number of mixtures of a model, is the mix-
ture weight, is the density function of the model, is
a Gaussian random variable with a probability density func-
tion , is a normal distribution with mean
value , and covariance of the Gaussian density func-
tion of each mixture of the GMM. The constraints of
are , with and . A GMM
over an RPS is shown in Fig. 3. This figure shows the data points
and three GMM parameters estimated by an expectation max-
imization (EM) algorithm [27]: centers, covariance axes, and
one standard deviation error for each mixture.
In the presented monitoring method, the reconstructed phase

space was used to build the Gaussian mixture model (signature)
for each motor operating condition.

III. METHOD

The monitoring method presented in this paper classifies
the motor operating condition of an induction motor as either
healthy or faulty based on the data analysis of the air-gap torque
profile. A faulty condition represents any number of adjacent
broken rotor bars.
The high-level algorithm of the monitoring method is de-

picted in Fig. 4 and Fig. 6. The proposed approach is divided in
two stages: the training (offline) stage and the monitoring (on-
line) stage.
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Fig. 5. Training stage air-gap torque profiles (signals) for the simulated 2-hp
motor. (a) MAGSOFT simulation. (b) With dc offset removed. (c) Low pass
filtered. (d) Final normalized torque signal.

A. Training Stage

During the training stage, this method generates signa-
tures for a healthy and faulty three-phase, 2-hp, two-pole,
60-Hz, 460-V, squirrel-cage induction motor simulated in
Flux2D-MAGSOFT TSFE software at rated load and speed
[16], [28]. These signatures are generated from the air-gap
torque profile of the healthy and faulty operating condition
obtained directly from the simulations at a sampling frequency
of 2 kHz. Here, the faulty condition is that of a motor with
one broken rotor bar. Experimental data can be used instead
of simulation data in this training stage. The algorithm of the
training stage contains five steps as illustrated in Fig. 4.
In the first step, MAGSOFT generates time-domain profiles

of the air-gap torque signals for the healthy and faulty cases. One
second of the air-gap torque profile (signal) for the one broken
bar case is shown in Fig. 5(a).
The second step is the preprocessing of the torque signal.

In this step, the torque signal is normalized to allow the re-
sulting signatures from the training stage to be used on the fault
monitoring of different induction motors. This preprocessing
step also removes the high frequency components of the torque
signal and normalizes it. To minimize filtering errors, the dc
offset is eliminated as shown in Fig. 5(b). The torque signal
is filtered by a sixth-order low-pass elliptic digital filter with
a cutoff frequency of 100 Hz, a passband of 0.1 dB, and a
stopband of 50 dB [29]. The resulting filtered signal is shown
in Fig. 5(c). Finally, the torque signal is normalized to zero
mean and unit standard deviation. An example of the normal-
ized air-gap torque signal is shown in Fig. 5(d).
The third step is determine the RPS dimension, , and the time

lag, , using the FNN and automutual information techniques,
respectively. The FNN and automutual information methods are
described above in Section II-D.
The fourth step generates RPSs according to (2). One RPS

is constructed from the torque signal of the healthy simulated

motor. A second RPS is constructed from the torque signal of
the simulated motor with one broken bar.
The fifth and last step learns the GMM signatures. This step

consists of constructing a Gaussian mixtures model (GMM)
[22], [26] from each of the RPSs. The resulting models are the
signatures of each motor operating condition. Thus, this method
builds one GMM for the healthy case and one GMM for the
faulty case.
The number of mixtures is determined empirically by ana-

lyzing training set accuracy across a range of number of mix-
tures [1]. The classification accuracy tends toward an asymptote
as the number of mixtures increase. Thus, the lowest number of
mixtures that yields the highest accuracy for a given training set
is chosen and this number become a constant in this monitoring
method even for monitoring of motors different from the one
used in the training stage. This approach yielded four mixtures
as the best for the proposed monitoring method.
Meanwhile, a reference frequency for the torque normaliza-

tion process of the monitoring (testing) stage is calculated, see
Fig. 5(d). The reference frequency is the frequency of the fil-
tered and normalized air-gap torque, , which is given
as follows:

(6)

where is the slip and is the operating frequency of the
motor used in the training stage. The frequency as well
as the synchronous and the rotor speeds used to calculate the
slip are readily obtained from MAGSOFT software. The
simulated faulty motor with rotor speed of 3511 r/min, yielded
a normalized torque frequency , equal to 2.96 Hz as
shown in Fig. 5(d). This normalized torque frequency ,
is used during the monitoring stage as shown next.

B. Monitoring Stage

The monitoring (testing) stage, illustrated in Fig. 6, uses
datasets experimentally acquired from actual induction motors
and can be divided into the following steps described below.
First, the air-gap torque and rotor speed are estimated from

the acquired voltage and current signals of the actual test motor.
The air-gap torque is computed using a torque estimator ac-
cording to (1) of Section II-B. A resulting estimated air-gap
torque signal is illustrated in Fig. 7(a) for the 5-hp motor at rated
speed and full load with four broken bars.
Next, segments of one second of the torque signal are prepro-

cessed using the same approach used during the training stage,
i.e. dc offset elimination, low pass filtering, and zero mean and
unit standard deviation normalization. This normalizes the am-
plitude of the torque signal. The resulting signals are illustrated
in Fig. 7(b) with the dc offset removed and Fig. 7(c) with filtered
and amplitude normalized torque signal for the 5-hp motor.
Third, a frequency normalization process is performed on

the torque signal. The frequency of the fundamental component
of the air-gap torque for the test motor, , is given as
follows:

(7)
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Fig. 6. Online motor fault monitoring algorithm.

Fig. 7. Monitoring (testing) stage air-gap torque profiles (signals) for the 5-hp
motor at rated speed and rated load. (a) From torque estimator. (b)With dc offset
removed. (c) Filtered by a low-pass filter and with amplitude normalization.
(d) Final amplitude and frequency normalized torque signal.

where is the slip and is the operating frequency of the
test motor. The operating frequency and the rotor speed
of the actual monitored motor are computed by the speed

estimator given in Section II-C. The slip is calculated as
, where is the synchronous motor

speed. The is calculated as , where is
the number of poles of themotor. According to (7), for the afore-
mentioned 5-hp, four-pole induction motor with a rotor speed
of 1165 r/min, the frequency of the torque profile is
3.5 Hz, as shown in Fig. 7(a) and (b) and Section II-A above.
The frequency normalization ratio of the torque signal ob-
tained for the real test motor is computed as follows:

(8)

Accordingly, the 2.96 Hz/3.5 Hz 0.84 for the
TSFE simulated 2-hp motor and the 5-hp actual test motor, re-
spectively [see Fig. 7(c)].
Using frequency normalization ratio , the test motor

torque signal is frequency normalized such that its fundamental
frequency component is equivalent to that used during the
training stage. This is accomplished as follows:

Case I: . First, the number of data points of each
sample of the testing set, which is 2000 in Fig. 7(c), is mul-
tiplied by the . Second, the torque signal is truncated
at this resulting number of samples and the remainder por-
tion of the signal is discharged. Next, the truncated torque
signal is up sampled by a factor and down
sampled by a factor [29] in order to obtain the
truncated signal with the original number of data samples
as shown in Fig. 7(d) and, consequently, with the same fre-
quency of the torque signal of the training set.
Case II: . The torque signal of the testing set
is simply up-sampled by a factor and
down-sampled by a factor . If , the
frequency normalization process is skipped.

The up and down-sampling factors were 1000 in order to
minimize resampling error, which is usually less than two data
points for a torque signal with 2000 points. Thus, the resampling
error does not cause any significant degradation in motor fault
classification accuracy.
This match in the fundamental frequency component of the

training and testing dataset after frequency normalization oc-
curs only if the torque modulation of the testing and training
sets is due to broken rotor bars. This match in frequency is
needed to improve the motor fault monitoring accuracy since
the RPS used to generate the signatures may yield signatures
for the same motor operating condition that do not match and
cause misclassifications.
As shown earlier in Section II, the frequency of the torque

profile modulation due to broken rotor bars is a function of the
operating frequency and the level of the motor torque. Thus, this
adjustment in frequency of the torque modulation signal physi-
cally corresponds to the motor operation at different power fre-
quencies or levels of load, and not a function of the motor status
of operation under faulty or healthy conditions. Accordingly,
this frequency normalization of the torque signal yields a motor
fault monitoring method which is independent of the level of
load torque, operating frequency, or design specifications, such
as power rating and number of poles, which may be different
from the TSFE-simulated motor being used in the training stage.
This normalization in amplitude and frequency constitutes the
proposed torque normalization method.
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Fourth, a RPS from the normalized torque signal is con-
structed according to (2) using the time lag and dimension ,
for the training stage.
The final step is fault classification, in which the conditional

likelihoods of the RPS obtained during the monitoring stage
and the GMM signatures generated during the training stage are
computed as follows:

(9)

where is the RPS matrix, is the dimension of the RPS,
is the time lag of the RPS, is a row of the RPS matrix,
is the number of sampled data points of the torque signal, and

is the conditional probability of belonging to a
class . A Bayesian maximum-likelihood classifier is used to
identify the signature from the training stage with maximum
likelihood [22] as

(10)

This classifies motor operating condition as healthy or faulty.
The experimental verification of this method is given next.

IV. EXPERIMENTAL VERIFICATION OF THE METHOD

The proposed monitoring method was validated using two
physical induction motors. These namely are a three-phase,
2-hp, two-pole, 60-Hz, 24 stator slots, 36 rotor bars,
squirrel-cage induction motor line energized from a constant
frequency 230 V sinusoidal power supply, and a three-phase,
5-hp, six-pole, 60 Hz, 36 stator slots, 45 rotor bars, squirrel-cage
induction motor, line energized from constant frequency 460-V
sinusoidal power supply.
The 2-hp motor was tested under three different levels of load

(50%, 75%, and 100%) and four fault conditions (healthy, one
broken bar, three broken bars, and five broken bars). Thus, the
2-hp motor was tested under 12 different operating conditions.
For each operating condition, nine datasets were collected and
tested for a total 108 datasets.
The 5-hp motor was tested under three different levels of load

(50%, 75%, and 100%) and under five fault conditions (healthy,
one broken bar, two broken bars, three broken bars, and four
broken bars). Thus, the 5-hp motor was tested under 15 different
operating conditions. For each operating condition, five datasets
were collected and tested for a total 75 datasets.
In the laboratory, the testing was conducted in the following

manner for both 2-hp and 5-hp motors to obtain the testing
datasets. The induction motor under test was mounted in a
dynamometer configuration, where the shaft of the induction
motor was directly coupled to the shaft of a dc motor, which
acted as the load. The dc motor was controlled by a dc drive
that was set in torque mode, allowing the load (torque) applied
to the testing motor to be controlled. The fault conditions were
progressively created by drilling holes in the rotor bars.
The algorithm of this monitoring method was trained with

data from a 2-hp, two-pole, 60-Hz, 36 rotor bars, squirrel-cage
induction motor simulated using MAGSOFT as a TSFE method
[16] for two operating conditions (healthy and one broken bar).

TABLE I
MOTOR FAULT MONITORING ACCURACY FOR A THREE-PHASE, 2-HP,
TWO-POLE, 60-Hz INDUCTION MOTORS AT A FREQUENCY OF 60 Hz AND
MOTOR LOADS OF 50%, 75%, AND 100% OF THE RATED TORQUE

TABLE II
MOTOR FAULT MONITORING ACCURACY FOR A THREE-PHASE, 5-HP,
SIX-POLE, 60-Hz INDUCTION MOTORS AT A FREQUENCY OF 60 Hz AND
MOTOR LOADS OF 50%, 75%, AND 100% OF THE RATED TORQUE

The training set was composed of two time series for the healthy
case and two additional time series for the faulty case. Each
time series was generated at a sampling frequency of 2 kHz.
Thus, each time series of one second contains 2000 sampled
data points.
The experimental results for this rotor bar fault monitoring

method are presented in Tables I and II, respectively, for the
2-hp and 5-hp motors. From these tables, one can observe that
the method presented in this paper yielded a perfect fault moni-
toring accuracy of 100% at rated torque for bothmotors. Also, as
the level of motor load decreases the accuracy also decreases,
because the signatures are based on the ac component of the
torque signals, which is load dependent as discussed earlier in
Section II. As also shown in Table II, an accuracy of 92% was
obtained for the 5-hpmotor at 50% of rated torque, whichmeans
two misclassifications out of 25. Meanwhile, an accuracy of
83% was obtained at 50% of rated torque for the 2-hp motor
as shown in Table I, which represents six misclassifications out
of 36.
Furthermore, a fault monitoring accuracy of 100% was ob-

tained for the 5-hp motor at 75% of rated torque while an accu-
racy of 75% was obtained at 75% of the rated load for the 2-hp
motor, which represents nine misclassifications out of 36. The
accuracy evidenced by these results validates the efficacy of this
monitoring method.

V. DISCUSSION OF RESULTS

The broken rotor bar monitoring method presented here is
robust in that the fault signatures generated from a simulation
of a specific machine can be used to classify faults in motors
with different power ratings, numbers of poles, levels of load
torque, operating frequencies, and other design specifications.
In this case, the signatures for the training stage were generated
from a simulated 2-hp inductionmachine and applied in the fault
monitoring of a physical 2-hp and a 5-hp induction motor.
The main goal of this fault monitoring method is to clas-

sify the operating condition of an induction motor as healthy or
faulty without accounting for the exact number of broken bars,
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which improves the robustness of this method. Again, the faulty
condition here means any number of broken rotor bars.

A. Required Sensors

This method uses only the three phase stator currents and
voltages to classify a motor as healthy or faulty. Such variables
are usually monitored or readily available in many applications,
in which case extra sensors and installations are not required. In
this method, the torque and speed signals which are used to gen-
erate the signatures during the monitoring stages are obtainable
here through torque and speed estimators, respectively, without
need for direct torque or speed measurement. Accordingly, the
torque estimator uses the three phase stator currents and volt-
ages in addition to parameters that are easily obtainable from
data normally listed in the nameplates of such induction mo-
tors, while the speed estimator uses only one stator phase cur-
rent, and induction motor parameters that are also easily avail-
able from the nameplate data. Parameter estimation has been
successfully demonstrated in sensor failure detection and miti-
gation [30] even under noise conditions [31].

B. Amplitude and Frequency Normalization of Torque

The results shown in Tables I and II validate the efficacy of
the monitoring method in classifying the operating conditions
of induction motors with different specifications and operating
setups (frequency and level of load) from the motor used to train
this method. This was made possible through the use of a novel
torque normalization process, which yields a torque signal from
a real motor with fundamental frequency component and am-
plitude almost identical to the torque signal generated by sim-
ulation for the training stage when the training and testing sets
consist of broken bar cases. The amplitude of the torque signal
modulation due to broken bar faults is a function of the motor
load, motor power, and the number of broken bars as shown
in Section II. Thus, the normalization in amplitude renders sig-
natures which are independent of these parameters. However,
the profile of the torque modulation remains the same in ampli-
tude during normalization. On the other hand, the frequency of
the torque modulations due to broken bar faults is a function of
the level of load torque and operating frequency. Accordingly,
the torque normalization process continuously adjusts the fre-
quency of the torque signal of the testing set in such a manner
that if the signals from the training and testing sets are due to
broken bars, there will be a match in frequency between both
signals. These frequency and amplitude normalizations are nec-
essary. This is because the reconstructed phase space used to
build the Gaussian mixture models (signatures) of the operating
conditions during the training and testing stages is sensitive to
the amplitude, frequency, and profile of the signals. Thus, the
torque normalization process under broken bar fault condition
yields a match in amplitude and frequency between the torque
signals of the training and testing sets. This is while the torque
profile, which is an inherent characteristic of broken bar faults,
remains in its original form. Thus, this match in amplitude, fre-
quency, and profile between training and testing sets for fault
conditions is crucial to the process of obtaining a high level of
fault classification accuracy due to the RPS sampling frequency
dependency. Thus, the amplitude and frequency normalization

does not imply losses of information regarding the operating
condition of the motor.

C. Effect of Light Load to the Fault Classification Accuracy

In Tables I and II, it is shown that at light loads the motor
fault classification accuracy decreases. This can be explained
from an electric machinery theory and magnetic field viewpoint.
From an electric machinery viewpoint, the rotor electric circuit
impedance increases at light loads and approaches the no-load
rotor impedance, which is approximately an open-circuit con-
dition. Thus, any failure in the rotor cage, such as broken rotor
bars, is reflected with a weak effect in the stator winding cir-
cuit and consequently results in a small disturbance in the stator
currents and air-gap torque, which in turn gives rise to the dif-
ficulties in classifying the correct status of motor health. Now,
from a magnetic field viewpoint, for a healthy rotor cage the
rotor core remains at a good degree of circular magnetic sym-
metry at rated load or near rated load. However, when a rotor
bar breaks at rated load or close to it, this symmetry is lost and
a local saturation, causing lower lamination permeabilities, at
that spot where the broken bar or bars are located. This results
is an “apparent magnetic saliency or asymmetry” in the rotor.
This asymmetry, which rotates at the slip speed with respect the
synchronously rotating air-gap flux, disturbs the stator currents
and consequently the air-gap torque. Accordingly, this effect is
weakened at light loads, and hence this gives rise to the diffi-
culty in diagnosing the status of rotor health for the 2-hp and
5-hp case-study motors at these light loads. This also explains
why loads below 50% of the rated load were not considered in
this work. Additionally, induction motors are expected to work
close to rated torque in order to obtain higher efficiency. Even
in applications in which the motor is lightly loaded, the motor
is expected to momentarily operate above 50% of the rated load
when the fault detection can occur.

D. Comparison of Accuracy Between the 2-hp and 5-hp
Motors

Tables I and II show that this method yields a better accu-
racy for the 5-hp motor than the 2-hp motor. This is because
the number of rotor bars per pole for the 2-hp motor is 18 rotor
bars/pole (36 bars/2 poles), while the number of rotor bars per
pole was 7.5 for the 5-hp motor (45 bars/6 poles). Thus, one bar
breakage in the 2-hp motor is a much lesser disturbance to the
magnetic field of the air-gap torque signal than it is in the 5-hp
motor case. Hence, the capability to detect broken rotor bars in
this 2-hp motor is reduced in comparison to that capability of
the 5-hp motor case.

E. Signatures From Torque Versus Current

The air-gap torque is modulated with a characteristic profile
at main frequency component for a faulty case. On the other
hand, a frequency component slightly modulates the main
frequency component of a current signal in a faulty case. Thus,
the RPS from current signals would be very similar for a faulty
and healthy case and difficult to identify. Therefore, an RPS
built from the air-gap torque yields amore representative and ro-
bust signature of a faulty motor because it relies on a product of
both currents and voltages/flux linkages of a monitored motor.
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That is why motor signatures were built from torque rather than
current signals alone.

VI. CONCLUSION

In this paper, a new technique for induction motor fault mon-
itoring was presented. In this method, the air-gap torque pro-
file was analyzed in order to identify the induction motor op-
erating condition as either healthy or faulty, in which case the
faulty condition represents the presence of one or more broken
bars. The main advantages of this method are twofold. First,
this technique, which was found to be robust, was trained with
a dataset generated from a simulated motor, which avoided de-
structive tests to train this method. The datasets of the moni-
toring stage were obtained from experimental setups with ac-
tual motors of various designs. The fault classification accuracy
was 100% at full load. Second, the novel torque normalization
process of the monitoring stage normalizes the amplitude and
frequency of the air gap torque signals during the monitoring
stage to have similar amplitude and frequency when compared
with the signatures from the training stage. As a result, this mon-
itoring method which was trained for a simulated 2-hp induction
motor can monitor the operating condition of actual induction
motors with different levels of load torque and operating fre-
quency, as well as design specifications, such as power rating
(the case-study 5 hp motor tested in the laboratory) and number
of poles, which are different from the TSFE simulated motor
used in the training stage. This is because of the fact that this
novel torque normalization process leads to “generic” signa-
tures which are independent of these parameters. The experi-
mental results presented here evidenced the robustness and scal-
ability of the method, which yielded good motor fault classi-
fication accuracy. Thus, this monitoring method based on the
air-gap torque profile analysis can be a powerful tool for induc-
tion motor fault classification.
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