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Abstract—The benefits and drawbacks of a 5-hp reconfigurable
induction motor, which was designed for experimental emulation of
stator winding interturn and broken rotor bar faults, are presented
in this paper. It was perceived that this motor had the potential of
quick and easy reconfiguration to produce the desired stator and
rotor faults in a variety of different fault combinations. Hence, this
motor was anticipated to make a useful test bed for evaluation of
the efficacy of existing and new motor fault diagnostics techniques
and not the study of insulation failure mechanisms. Accordingly, it
was anticipated that this reconfigurable motor would eliminate the
need to permanently destroy machine components such as stator
windings or rotor bars when acquiring data from a faulty machine
for fault diagnostic purposes. Experimental results under healthy
and various faulty conditions are presented in this paper, including
issues associated with rotor bar-end ring contact resistances that
showed the drawbacks of this motor in so far as emulation of rotor
bar breakages. However, emulation of stator-turn fault scenarios
was successfully accomplished.

Index Terms—Condition monitoring, fault diagnostics, fault em-
ulation, induction motors, reconfigurable motors, rotor broken bar
faults, stator winding interturn faults.

I. INTRODUCTION

POLYPHASE induction motors have been the workhorse
(main prime movers) for industrial and manufacturing pro-

cesses as well as some propulsion applications. They are com-
monly used in ac adjustable speed drives where torque and
speed control is indispensable. The ruggedness, ease of control,
and cost-effective design of squirrel-cage induction motors are
the main appealing features to consumers and engineers for the
various aforementioned applications. Due to its popularity, there
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Fig. 1. Induction motor fault categories.

TABLE I
PERCENTAGE OF FAILURES BY MAJOR MOTOR COMPONENTS

have been many investigations on condition monitoring and fault
diagnostics in electric machines throughout the literature, espe-
cially squirrel-cage induction motors [1]–[14]. This is because
failure of such motors as prime movers can lead to significant
undesirable repercussions such as production downtime, finan-
cial loss, adverse environmental effects, and possible personnel
injury. Consequently, considerable interest in machine fault di-
agnostics received from industry and academia has prompted
researchers to develop excellent state-of-the-art diagnostic tech-
niques for various possible types of faults such as indicated in
Fig. 1. The probability of occurrence of such faults is given in Ta-
ble I (see [15] and [16]). Therein, both the stator and rotor faults
account for around 40% of all faults. Accordingly, the main
thrust of this paper centers on electrical stator and rotor faults.

In order to develop improved or novel stator and rotor fault
diagnostic methods, extensive research has been done on the
dynamic modeling of motor faults. This includes using the
time-stepping coupled finite-element state–space technique to
incorporate the stator and rotor faults for performance study
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and analysis [17]. It is desired to compare and verify these
motor performances with physical data acquired from an actual
motor with selected faults. Comparison between modeled and
actual faults can significantly improve the fidelity of the simula-
tion models and lead to improvements in future machine models
representing various faulty conditions. Present methods of ob-
taining motor fault data are time-consuming and often require
permanent deformation or destruction of motor components in
order to perform the experiments. These actions of destruction
of motor components are often irreversible, and hence, require
several spare motors or their associated components in order to
perform experiments of various fault scenarios. The machine
components used for these tests are experiment specific and of-
ten require a significant amount of storage space. It was thought
that these costly obstacles could be overcome through the use of
a reconfigurable induction motor that can physically and exper-
imentally emulate such faults in a reversible manner that avoids
permanent damage to motor parts. The main objective of this
paper was to develop a reconfigurable induction machine that
can be utilized for stator and rotor fault emulation. In the case of
stator interturn faults, the circulating current was controlled by
varying the resistance between the turns. Whereas, in the case of
rotor broken bar faults, these faults were emulated by means of
removal of bars from the reconfigurable cage. Accordingly, this
paper was not intended for the study of the process of insulation
failure in the turns or dielectric/insulation variability around a
developing short. In other words, this paper was not intended to
characterize the mechanisms behind stator winding insulation
breakdowns/failures or rotor bar breakages.

The reconfigurable induction motor, which is the subject of
this paper, is a 230/460-V, 60-Hz, six-pole, 5-hp, squirrel-cage
three-phase machine. This machine was built with a reconfig-
urable rotor and also tested with a production-type aluminum
die-cast squirrel-cage rotor. It was thought that it may possess
the advantages of quick and easy reconfiguration of the motor to
produce the desired stator or rotor fault, or a combination of both.
In addition, the utilization of the reconfigurable motor eliminates
the need to permanently destroy machine components such as
stator phase windings or rotor squirrel-cage bars. The thinking
behind this effort was that, having the versatility of the reconfig-
urable motor, large amounts of data can be acquired efficiently
for analysis under a variety of different fault configurations or
combinations. In this present phase of the paper, the extent of
the faults has been limited to stator winding interturn and broken
bar faults due to their encompassing of around 40% of all motor
faults (see Table I). Issues associated with the reconfigurable ro-
tor cage design and resulting experimental data are fully detailed
in this paper. The cast-type squirrel-cage was used to establish
a healthy motor performance database of current and voltage
waveforms, as well as fast Fourier transform (FFT) spectra [4],
[5] and pendulous oscillation swing angle profiles [7]–[9].

This paper consists of three other sections. The first section is
on the design concept and methodology of construction of the
reconfigurable induction motor. The second section presents
the experimental setup (see Fig. 2) and test results obtained
under normal operation using both the cast-type and reconfig-
urable squirrel cages. This section also contains results of faulty

Fig. 2. Experimental setup.

operations for stator winding faults. In the same section, cer-
tain fault diagnostic techniques such as the pendulous oscilla-
tion phenomenon [7]–[9] and the negative sequence component
concept [1]–[3] were utilized to diagnose the stator winding
interturn faults using the experimentally acquired motor fault
signature data. The purpose of such tasks is to verify the per-
formance of the reconfigurable induction motor under healthy
and faulty conditions. In addition, this section includes the rotor
broken bar faults under load conditions and the diagnostic re-
sults using the FFT [4], [5] and the pendulous oscillation [7]–[9]
techniques, as well as the associated analysis of the reconfig-
urable squirrel-cage drawback issues. Finally, conclusions and
recommendations are presented in the final section.

II. RECONFIGURABLE MOTOR DESIGN CONCEPT

AND METHODOLOGY

The design of the reconfigurable motor was accomplished
with the help of the frame size and configuration of an exist-
ing induction motor rated at 5-hp. In other words, the motor
housing and the stator core of this existing 5 hp induction mo-
tor were used as the base design for the new reconfigurable
induction motor. The remainder of the design consists of the
rotor core, the rotor cage including the rotor bars and the end
rings, the shaft, the end cap that is used to secure the rotor bars
into the end rings, and the stator winding connections including
winding taps to enable one to emulate a wide variety of stator
short-circuit faults. The detailed design concepts of these recon-
figurable motor components are given in the following sections.

A. Stator Design

As mentioned earlier, the stator core was fabricated in such a
manner so as to be identical to that of an existing 5-hp induction
motor. The stator core consists of 36 slots, i.e., in this machine,
there are six slots per pole (for a six-pole motor) and two slots per
pole per phase. A cross-sectional view of the motor is depicted
in Fig. 3. To minimize the inherent cogging torque effects due to
the space harmonics arising from the magnetic circuit geometric
configurations and the effects of winding layouts, the stator core
was skewed by one slot pitch, i.e., by 30◦e. The skewed stator
including its winding coils is shown in Fig. 4. Meanwhile, the
stator phase windings are double layered, lap connected with
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Fig. 3. Cross-sectional view of 5-hp reconfigurable motor.

Fig. 4. Skewed stator with winding coils and taps.

Fig. 5. Stator winding layouts with short-pitched coils.

short-pitched coils, each with a span of 150◦e (see Fig. 5). The
reason for skewing the stator and not skewing the rotor was
to facilitate/ease the dismantling of the rotor cage bars when
necessary for rotor fault emulation purposes.

In order to emulate stator interturn short-circuit faults, the
motor had a phase winding that was prepared with taps for pur-
poses of “experimental mimicking” of incipient interturn faults.
Here, incipient stator faults have been emulated by varying the
resistance between the taps, and consequently, varying the mag-
nitude of the circulating fault current. Hence, in this approach,
physical mechanisms of insulation failure are not emulated but
rather the effects of partial insulation failure prior to a complete
insulation breakdown are considered. In this approach, the con-
dition of the stator winding insulation is evaluated based on the

Fig. 6. Schematic diagram of stator windings with taps.

TABLE II
5-HP INDUCTION MOTOR CHARACTERISTICS

magnitude of the circulating fault current only in the very early
stages of insulation weakening. No attempt at the study of the
progression of insulation failure was intended here. Ten taps
were soldered sequentially every two turns, beginning with the
“start” point of turn #1 and ending with the “start” point of turn
#19 in only one phase of the machine (see the schematic winding
diagram of Fig. 6). The limited number of taps to be soldered
in the windings is restricted by the amount of space available
inside the motor housing. These taps are specially added at
the motor terminal of one of the phases since the stator faults
are likely to occur closest to the terminal end of the windings due
to insulation stresses caused by the high switching effects from
pulsewidth-modulated (PWM) drives [18]. To limit the short-
circuit loop current, a variable external resistor was connected
between the taps of the shorted portion of the winding turns
(see Fig. 6). The design characteristics of this reconfigurable
induction motor are given in Table II.

B. Rotor Design

A production-type aluminum die-cast squirrel-cage, see
Fig. 7, was prototyped for use with this motor to help collect a
baseline healthy performance experimental database. Previous
efforts for emulating broken rotor bar faults have required dif-
ferent rotor bars to be broken by drilling out portions of such
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Fig. 7. Die-cast squirrel-cage rotor.

bars to physically break the continuity of the current conduc-
tion path through such bars. This process of emulating broken
bar faults requires custom machining, and the action (damage)
performed on such rotors is irreversible. This method of bar
breaking essentially limits the mix of combination and number
of broken bars that can practically be made available for testing
in a given motor, such as varying combinations of adjacent or
nonadjacent bar breakages, which would necessitate a separate
rotor for each desired set of broken bar configuration or sce-
nario. A broken bar fault generally implies the presence of a
nonconductive discontinuity (air gap) between the two broken
bar sections. Therefore, this leads to the idea of constructing
a reconfigurable rotor in which the rotor bars can be removed
at will to emulate broken bar faults. The thinking was that the
advantage of this reconfigurable rotor lies in its ability to create
a large number of combinations of broken bar fault scenarios
using the same rotor cage and the potential reversibility of such
bar breakages.

The core was manufactured from the same type of steel lam-
inations that were used to manufacture the stator core. As men-
tioned before, for the convenience of inserting the rotor bars into
the lamination stack, the rotor core was not skewed. Again, in
order to eliminate any cogging effect present in the motor torque
due to space harmonic effects, the stator core, as mentioned be-
fore, was skewed by one stator slot pitch of 30◦e. Since the rotor
core was not skewed, the rotor bars were accordingly designed
to have a layout parallel to the axis of rotation, and they were
fabricated from a copper alloy (see Figs. 8 and 9). The rotor end
rings were also made of the same material as the rotor bars, and
the geometry of the end rings were designed with an outer di-
ameter equal to that of the rotor core. The design was conceived
in such a manner that it allows the end rings to be removed,
and hence, the rotor bars become easily accessible for removal
or insertion from or into the rotor slots. Due to the fact that the
rotor bars are not welded to the end rings, such as in typical
motor designs, the slots of the end rings were generously coated
with conductive grease to ensure a good electrical conduction
path to the bars. The rotor bars and the end rings as well as the
complete rotor are depicted in Figs. 8 and 9, respectively. In this
reconfigurable motor, there are a total of 46 rotor bars.

Fig. 8. Rotor bars and end rings.

Fig. 9. Reconfigurable squirrel-cage rotor.

C. Shaft and End Cap Design

The shaft was constructed by machining a steel rod to its
desired geometry. Two keyways, which were 180◦e from each
other, were milled into the shaft to secure the rotor core. In
a typical production induction motor of this size and rating,
the rotor core, including the aluminum die-cast cage, is “hot
dropped” on the shaft to form one inseparable assembly. This is
not the case for the reconfigurable rotor at hand. Here, a custom
shoulder was welded to the drive end of the shaft in order to
secure the position of one of the end rings. A nonconductive
washer was added to act as an insulator between the shoulder
and the end ring (see Fig. 9). Meanwhile, opposite to the drive
end of the shaft, in order to tighten the other end ring to the
rotor core, an end cap of the same diameter as the rotor was
designed to slide down the shaft to secure that end ring. Again,
a nonconductive washer was added as an insulator between the
end cap and that end ring (see Fig. 9). Threads were added to the
nondrive end of the shaft so that the end cap could be secured to
the end ring using a nut (see Fig. 9 for the details). Meanwhile,
a keyway was inserted in the square slot formed by the rotor and
the end cap to secure these parts to the shaft so that they rotate
as one piece with the shaft.
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Fig. 10. Phase current FFT of healthy die-cast rotor cage.

Fig. 11. Healthy die-cast rotor cage pendulous oscillation.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Healthy Motor Test Results

The motor was tested at full load and rated frequency using
the die-cast squirrel-cage rotor. It should be mentioned that the
motor was energized from an open loop (constant volts per hertz)
commercially available PWM-inverter drive. The resulting FFT
spectrum of its stator current waveform is given in Fig. 10. Its
corresponding profile of the magnetic field pendulous oscilla-
tion, which is the time-domain profile of the angle between the
current and voltage space vectors at the motor terminals, [7]–[9]
is given in Fig. 11. For completeness and convenience of the
reader, the magnetic field pendulous oscillation angle δ(t) as-
sociated with broken rotor bars or rotor conduction defects is a
function of time, and is the instantaneous phase angle difference
between the motor’s stator voltage space vector v⇀s and the stator
current space vector i

⇀
s . Accordingly, δ(t) = � v⇀s − � i

⇀
s , while

the so-called swing angle ∆δ1 = δmax − δmin is the peak-to-

Fig. 12. Swing angle ∆δ1 versus the short-circuit current ratio If /Ip .

peak magnitude of the fundamental component of the pendulous
oscillation angle δ(t) of frequency (2sf ), where s is the slip and
f is the supply frequency. For further details on this diagnos-
tic method, [7]–[9] should be consulted. The lack of presence
of any distinct lower sideband (LSB) in the FFT spectrum of
Fig. 10 indicates that there are no broken bars or anomalies such
as interbar lamination shorts presence in this cage. The lack of a
fundamental (2sf) component of pendulous oscillation angle in
Fig. 11 confirms the lack of bar breakage or other squirrel-cage
anomalies in this die-cast baseline case.

B. Test Results of Stator Interturn Shorts

Test data were collected on stator winding interturn shorts
using the reconfigurable rotor for this case of the subject 230/
460-V, six-pole, 5-hp, squirrel-cage induction motor fed from a
commercially available PWM-inverter drive. The test was per-
formed under open-loop (constant volts per hertz) PWM control
excitation fed from a 460-V utility supply. The stator interturn
fault test data presented herein were obtained under healthy, 2, 6,
10, 12, 14, and 16 shorted turns (STs) at 50% load condition. The
interturn short circuit was achieved through an external resistor
of 1 Ω, see Fig. 6, in order to restrict the shorted loop current
If to a safe level of current that does not cause permanent coil
damage.

In order to verify the motor performance under interturn short-
circuit fault conditions, two fault diagnostic techniques, namely
the pendulous oscillation phenomenon [7]–[9] and the negative
sequence component concept [1]–[3], were utilized. As reported
in [9], the range of the pendulous oscillation (swing angle)
progressively increases with an increase in the number of STs,
provided that the amplitude of the circulating loop (fault) current
If exceeds the amplitude of the line current Ia (or the positive
sequence component of stator currents Ip ). This progressive
increase in the swing angle magnitude ∆δ1 with the number
of STs can be observed in Fig. 12 and Table III. Note that
in Fig. 12, the swing angle ∆δ1 is plotted with respect to the
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TABLE III
5-HP RECONFIGURABLE MOTOR DIAGNOSTIC RESULTS

Fig. 13. Negative sequence current In versus the short-circuit current ratio
If /Ip .

circulating loop current ratio If /Ia (or If /Ip ). A similar trend
can also be observed using the negative sequence component
concept [1]–[3] as illustrated in Fig. 13 and Table III. Note that
in Fig. 13, the magnitude of the negative sequence component
of stator currents In progressively increases with an increase in
the number of STs, if and only if the circulating loop current
exceeds the line current. It is of importance to mention that the
swing angle and the negative sequence current component are
nonzero under a healthy condition due to the inherent motor
manufacturing imperfections that resulted in slight unbalances
in the motor phase a, b, and c currents. From these test results,
one can conclude that the reconfigurable motor has the capability
of emulating stator winding interturn faults.

C. Test Results of Reconfigurable Rotor Faults

In the reconfigurable squirrel-cage case, the rotor circuit did
not yield consistent results when operated under healthy con-
dition, i.e., with none of the rotor bars missing. The spectrum
of the phase currents corresponding to this healthy case shows
considerable LSB and upper sideband (USB) (see Fig. 14), thus
indicating the presence of poor electrical contacts between the
end rings of the cage and one or more of the removable bars.

Fig. 14. Phase current FFT of healthy, one broken bar, two broken bars, and
three broken bars.

This is despite the presence of the conducting film of coating
between these bars and the end rings.

Furthermore, a test was conducted involving electrically insu-
lating one of the end rings at the nondrive end of the rotor, with
the motor being energized for starting purposes. Normally, one
would expect zero starting torque, and hence, no rotation. How-
ever, it was observed that the motor exhibited a nonzero starting
torque and the shaft began to turn as a result. This indicated
to these investigators the presence of current loops in the cage
that could have only resulted from circuit shorts between the
rotor laminations and some of the bars, i.e., the presence of the
so-called interbar lamination shorts. This may be the result of
damage to the lamination insulation due to the repeated assem-
bly and disassembly process performed on this reconfigurable
cage during the course of performing all these tests. Such shorts
lead to asymmetry in the rotor MMF waveforms and to the
existence of a forward rotating component of MMF at (sf) fre-
quency and a backward rotating component at (−sf) frequency
with respect to the rotor that is rotating forward at a frequency
(1 − s)f . The latter (−sf) component gives rise to the (1 − 2s)f
component of current in the stator that is seen in the current FFT
spectrum as LSB under a condition with all bars present in this
rotor. As mentioned before, this is in addition to the possible
presence of bad conductive contacts between the bars and the
end rings resulting from the repeated disassembly and assem-
bly process. Thus, this leads to the appearance of conductive
discontinuities in the rotor loop currents and the appearance of
effects that resemble the presence of broken bars. Again, the use
of conductive grease at the bar contact tips with the end rings did
not considerably improve the performance of the motor. In sum-
mary, after numerous attempts to mechanically make sure that
good contact between the bar ends and the end ring do exist, the
problem of conductive discontinuities persisted. This leads the
authors to conclude that the present design of the reconfigurable
rotor leaves much to be desired. Thus, such a design is not rec-
ommended for use and implementation by future investigators
in this area.
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Fig. 15. Healthy rotor cage phase current FFT showing temperature
dependence.

The FFT spectra of the motor phase currents corresponding
to different fault scenarios were obtained by the removal of
one, two, or three bars from the reconfigurable cage. These FFT
spectra are depicted in Fig. 14. The fact that the sideband com-
ponents did not follow the expected pattern of an increase in
their magnitude with a corresponding increase in the number of
bars removed from the cage can be attributed to the fact that
the quality of the surface contact resistances between the end
rings and the bars could not be guaranteed in their consistency.
Therefore, these contact resistances change from case to case
because of the required disassembly of the rotor cage between
the conduction of the various tests in the laboratory. Upon close
examination of the location of the LSB frequencies (1 − 2s)f
in Fig. 14, for one, two, and three removed bar tests, emulating
one, two, and three bar breakages, it is found that the values
of the specific LSB frequencies for each of these cases are dif-
ferent from one another. This can be explained as given next.
Since these tests were all conducted at rated developed torque of
30 Nm (full-load condition), and since this torque is proportional
to R2/s, where R2 is the equivalent rotor resistance reflected
into the stator side and R2 varies in value for each of the cases
of one, two, and three removed bars, it follows that the running
slip s, which yields the 30 Nm torque will have distinct and sep-
arate values for each of these cases. Hence, the LSB frequency
(1 − 2s)f will be different for each of the aforementioned
“broken-bar” scenarios. These distinct and different LSB fre-
quencies are clearly apparent in the stator current test FFT spec-
tral results of Fig. 14.

Meanwhile, it was also found that the sideband components
are highly dependent on the rotor cage temperature, as illustrated
for rotor cold and hot conditions in Fig. 15 (under healthy case
with no broken/removed bars). This FFT spectrum of Fig. 15
again tends to allude to the uneven distribution of contact pres-
sure and resistances between the rotor bars and the end rings. It
should be observed that, for the same 30 Nm torque, the R2/s
ratio should remain the same for cold and hot rotor conditions.
Despite the rise in rotor temperature, which at first glace would

Fig. 16. Swing angle ∆δ1 of healthy, one broken bar, two broken bars, and
three broken bars.

Fig. 17. Healthy rotor cage pendulous oscillation. Swing angle ∆δ1 = 4.4◦.

lead one to think may lead to a rise in R2 , the opposite seems
to have happened here. This is because under hot condition, the
value of R2 appears to be lower due to higher contact pressure
caused by bar metal expansion inside the bar holes in the end
ring under heat. It follows that the corresponding running slip
will be lower in value under hot conditions than in cold condi-
tions to keep the R2/s ratio constant. This is born out by the
location of LSB frequencies in the FFT of the stator current
spectra shown in Fig. 15 for these two conditions.

The stator current test data for the healthy, one, two, and
three removed bar (broken-bar) tests in conjunction with the
corresponding motor terminal voltage test data were reexamined
using the pendulous oscillation method [7]–[9]. Again, in this
method [7]–[9], the time-domain profile of the angle between
the stator current space vector, and the stator voltage space vec-
tor renders the so-called swing angle ∆δ1 , which constitutes the
variable leading to the “broken-bar” fault index. Normally, under
healthy rotor condition, ∆δ1 is expected to be negligible. These
swing angle findings are given for the healthy and one through
three removed/broken bars in Fig. 16. Depicted in Fig. 17
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Fig. 18. One broken bar pendulous oscillation. Swing angle ∆δ1 = 4.2◦.

Fig. 19. Two broken bars pendulous oscillation. Swing angle ∆δ1 = 7.2◦.

is the time-domain profile of the pendulous oscillation angle
for the healthy rotor cage case. It is expected that the peak-to-
peak value of the pendulous oscillation known, namely, as the
swing-angle ∆δ1 in the healthy case should be negligible as
shown earlier for the die-cast cage of Fig. 11. However, as can
be seen from Fig. 17, this is not the case for this reconfigurable
cage, meaning that there is a considerable distortion of the ro-
tor magnetic field even in the healthy rotor cage case. This can
only result from conductive discontinuities in the cage circuit
“masquerading” as bar breakages. Depicted in Figs. 18–20 are
the time-domain profiles of the pendulous oscillation angle for
the cases with one, two, and three removed/broken bars under
full-load 30 Nm operating conditions. Normally, one would have
observed larger magnitudes of the pendulous oscillations as the
number of removed bars increased from one to two to three.
However, the expected monotonic trend demonstrated earlier
in [7]–[9] did not hold here. This indicates problems with the
contact resistances between bars and end rings, each time the
rotor is disassembled and reassembled between the processes

Fig. 20. Three broken bars pendulous oscillation. Swing angle ∆δ1 = 7◦.

of removal of the bars and conducting the tests. Therefore, as
can be seen from the earlier results, both diagnostic techniques
used before are in close agreement in so far as demonstrating
the present inadequacies of the reconfigurable rotor for broken
bar fault emulation purposes. Therefore, in summary, these au-
thors recommend that future investigators should not replicate
the present rotor design for purposes of broken bar emulation.
Hence, they consider that one of the contributions of this paper
is to warn investigators about the difficulties that arose with the
present design despite the mitigation measures that have been
attempted in their effort to make this concept a success. The
present rotor design concept cannot be considered a success in
light of the results presented here.

IV. CONCLUSION AND RECOMMENDATIONS

A 5-hp reconfigurable induction motor, which was designed
for emulation of stator winding interturn and broken rotor bar
faults, has been introduced. The experimental results obtained
under stator interturn faults have demonstrated that the reconfig-
urable motor has successfully emulated stator interturn faults,
which is further verified through the use of two diagnostic
methods, namely the pendulous oscillation phenomenon and
the negative sequence component concept. A complete set of
test results, including a healthy rotor core using a die-cast rotor
and rotor broken bar fault emulations using the reconfigurable
rotor has been presented. It was found based on the current
spectrum sideband analysis and magnetic field pendulous oscil-
lation swing angle analysis that the electrical surface contacts
between bars and end rings in the reconfigurable cage and elec-
trical shorts between bars and lamination material presented a
problem that leads to the appearance of bar breakage indication
where no such bar breakages are present. Hence, these authors
are led to recommend that the present reconfigurable rotor de-
sign concept for bar fault emulation cannot be considered a
success. However, a major effort has to be done toward improv-
ing the quality and uniformity of contact resistances between
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the rotor bars and end rings, such as using a bolted connection
between the rotor bars and end rings.
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