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Abstract 
 

A new framework for analyzing time series data 
called Time Series Data Mining (TSDM) is 
introduced. This framework adapts and innovates 
data mining concepts to analyzing time series 
data. In particular, it creates methods that reveal 
hidden temporal patterns that are characteristic 
and predictive of time series events. The TSDM 
framework, concepts, and methods, which use a 
genetic algorithm to search for optimal temporal 
patterns, are explained and the results are applied 
to real-world time series from the engineering 
and financial domains. 

1 INTRODUCTION 
The Time Series Data Mining (TSDM) framework is a 
fundamental contribution to the fields of time series 
analysis and data mining (Povinelli 1999). Methods based 
on the TSDM framework can successfully characterize 
and predict complex, nonperiodic, irregular, and chaotic 
time series. The TSDM methods overcome limitations 
(including stationarity and linearity requirements) of 
traditional time series analysis techniques by adapting 
data mining concepts for analyzing time series. 
A time series X is “a sequence of observed data, usually 
ordered in time.” (Pandit and Wu 1983, p. 1) 

{ }, 1, ,tX x t N= = � , where t is a time index, and N is the 
number of observations. Time series analysis is 
fundamental to engineering, scientific, and business 
endeavors. It may be applied to the prediction of welding 
droplet releases and stock market price fluctuations 
(Povinelli 1999; Povinelli and Feng 1998; Povinelli and 
Feng 1999a). 
The novel TSDM framework has its underpinnings in 
several fields. It builds upon concepts from data mining 
(Fayyad et al. 1996), time series analysis (Pandit and Wu 
1983; Weigend and Gershenfeld 1994), adaptive signal 
processing, genetic algorithms (Goldberg 1989; Povinelli 
and Feng 1999b), and chaos, nonlinear dynamics, and 
dynamical systems (Abarbanel 1996; Iwanski and Bradley 
1998). From data mining comes the focus on discovering 
hidden patterns. Building on concepts from both adaptive 

signal processing and wavelets, the idea of a temporal 
pattern is developed. From genetic algorithms comes a 
robust and easily applied optimization method (Goldberg 
1989). From the study of chaos, nonlinear dynamics, and 
dynamical systems comes the theoretical justification of 
the method, specifically Takens’ Theorem (Takens 1980) 
and Sauer's extension (Sauer et al. 1991). 

2 PROBLEM STATEMENT 
Figure 1 illustrates a TSDM problem, where the 
horizontal axis represents time, and the vertical axis 
observations. The diamonds show the time series 
observations, and the squares indicate observations that 
are deemed important – events. Although the following 
examples illustrate events as single observations, events 
are not restricted to be instantaneous. The goal is to 
characterize and predict when important events will 
occur. The time series events in Figure 1 are nonperiodic, 
irregular, and contaminated with noise. 

Figure 1: Synthetic Seismic Time Series 
To make the time series more concrete, consider it a 
measure of seismic activity, which is generated from a 
randomly occurring temporal pattern, a synthetic 
earthquake, and a contaminating noise signal. The goal is 
to characterize when peak seismic activity (earthquakes) 
occurs and then use the characterizations of the activity 
for prediction. 
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3 DATA MINING 
Weiss and Indurkhya define data mining as “the search 
for valuable information in large volumes of data. 
Predictive data mining is a search for very strong patterns 
in big data that can generalize to accurate future 
decisions.” (Weiss and Indurkhya 1998) Data mining 
evolved from several fields, including machine learning, 
statistics, and database design (Weiss and Indurkhya 
1998). It uses techniques such as clustering, association 
rules, visualization, decision trees, nonlinear regression, 
and probabilistic graphical dependency models to identify 
novel, hidden, and useful structures in large databases 
(Fayyad et al. 1996; Weiss and Indurkhya 1998). 
Others who have applied data mining concepts to finding 
patterns in time series include Berndt and Clifford (Berndt 
and Clifford 1996), Keogh (Keogh 1997; Keogh and 
Smyth 1997; Keogh and Pazzani 1998), and Rosenstein 
and Cohen (Rosenstein and Cohen 1999). Berndt and 
Clifford use a dynamic time warping technique taken 
from speech recognition. Their approach uses a dynamic 
programming method for aligning the time series and a 
predefined set of templates. 
Rosenstein and Cohen (Rosenstein and Cohen 1999) also 
use a predefined set of templates to match a time series 
generated from robot sensors. Instead of using the 
dynamic programming methods as in (Berndt and Clifford 
1996), they employ the time-delay embedding process to 
match their predefined templates. 
Similarly, Keogh represents the templates using piecewise 
linear segmentations. “Local features such as peaks, 
troughs, and plateaus are defined using a prior distribution 
on expected deformations from a basic template.” (Keogh 
and Smyth 1997) Keogh’s approach uses a probabilistic 
method for matching the known templates to the time 
series data. 
Other approaches to time series prediction include using 
genetic programming to learn the nonlinear generating 
function (Howard and Oakley 1994; Kaboudan to appear) 
and evolving a recurrent neural network (Torreele 1991) 
to learn temporal sequences. 
The TSDM framework, initially introduced by Povinelli 
and Feng in (Povinelli and Feng 1998), differs 
fundamentally from these approaches. The approach 
advanced in (Berndt and Clifford 1996; Keogh 1997; 
Keogh and Smyth 1997; Keogh and Pazzani 1998; 
Rosenstein and Cohen 1999) requires a priori knowledge 
of the types of structures or temporal patterns to be 
discovered and represents these temporal patterns as a set 
of templates. Their (Berndt and Clifford 1996; Keogh 
1997; Keogh and Smyth 1997; Keogh and Pazzani 1998; 
Rosenstein and Cohen 1999) use of predefined templates 
prevents the achievement of the basic data mining goal of 
discovering useful, novel, and hidden temporal patterns. 
The next section introduces the key TSDM concepts, 
which allow the TSDM methods to overcome the 
limitations of traditional time series methods and the more 
recent approaches of Berndt and Clifford (Berndt and 

Clifford 1996), Keogh (Keogh 1997; Keogh and Smyth 
1997; Keogh and Pazzani 1998), and Rosenstein and 
Cohen (Rosenstein and Cohen 1999). 

4 SOME CONCEPTS IN TIME SERIES 
DATA MINING 

The fundamental TSDM concepts are event, temporal 
pattern, event characterization function, temporal pattern 
cluster, time-delay embedding, phase space, augmented 
phase space, objective function, and optimization. 
In a time series, an event is an important occurrence. The 
definition of an event is dependent on the TSDM goal. In 
a seismic time series, an earthquake is defined as an 
event. Other examples of events include sharp rises or 
falls of a stock price or the release of a droplet of metal 
from a welder. A temporal pattern is a hidden structure in 
a time series that is characteristic and predictive of events. 
The temporal pattern p is a real vector of length Q. The 
temporal pattern is represented as a point in a Q 
dimensional real metric space, i.e., Q∈p � . A temporal 
pattern cluster, the neighborhood of a temporal pattern, is 
defined as the set of all points within δ of the temporal 
pattern.  

 ( ){ }: ,QP a d a δ= ∈ ≤p� ,  (1) 
where d is the distance or metric defined on the space. 
This defines a hypersphere of dimension Q, radius δ, and 
center p. 
A reconstructed phase space (Abarbanel 1996; Iwanski 
and Bradley 1998), called simply phase space here, is a 
Q-dimensional metric space into which a time series is 
embedded. Takens showed that if Q is large enough, the 
phase space is homeomorphic to the state space that 
generated the time series (Takens 1980). The time-
delayed embedding of a time series maps a set of Q time 
series observations taken from X onto tx , where tx  is a 
vector or point in the phase space. Specifically, 

( )( )21 , , , ,
T

t t t tt Qx x x xτ ττ − −− −=x � . 
To link a temporal pattern (past and present) with an 
event (future) the “gold” or event characterization 
function g(t) is introduced. The event characterization 
function represents the value of future “eventness” for the 
current time index. It is, to use an analogy, a measure of 
how much gold is at the end of the rainbow (temporal 
pattern). The event characterization function is defined 
such that its value at t correlates highly with the 
occurrence of an event at some specified time in the 
future, i.e., the event characterization function is causal 
when applying the TSDM method to prediction problems. 
Non-causal event characterization functions are useful 
when applying the TSDM method to system identification 
problems. 
One possible event characterization function to address 
this goal is ( ) 1tg t x += , which captures the goal of 
characterizing synthetic earthquakes one-step in the 
future. Alternatively, predicting an event three time-steps 



 

 

ahead requires the event characterization function 
( ) 3tg t x += .  

The concept of an augmented phase space follows from 
the definitions of the event characterization function and 
the phase space. The augmented phase space is a Q+1 
dimensional space formed by extending the phase space 
with ( )g ⋅  as the extra dimension. Every augmented phase 
space point is a vector 1, ( ) Q

t g t +< >∈x � . The augmented 
phase space is illustrated in Figure 2. 

Figure 2: Synthetic Seismic Augmented Phase Space with 
Highlighted Temporal Pattern Clusters 

The next concept is the TSDM objective function, which 
represents the efficacy of a temporal pattern cluster to 
characterize events. The objective function f maps a 
temporal pattern cluster P onto the real line, which 
provides an ordering to temporal pattern clusters 
according to their ability to characterize events. The 
objective function is constructed in such a manner that its 
optimizer *P  meets the TSDM goal. 
The form of the objective functions is application 
dependent, and several different objective functions may 
achieve the same TSDM goal. Before presenting an 
example objective function, several definitions are 
required. 
The index set ( ){ }: 1 1, ,t t Q NτΛ = = − + �  is the set of 
all time indices t of phase space points, where ( )1Q τ−  is 
the largest embedding time-delay, and N is the number of 
observations in the time series. The index set M is the set 
of all time indices t when xt is within the temporal pattern 
cluster, i.e. { }: ,tM t P t= ∈ ∈ Λx . Similarly, M� , the 
complement of M, is the set of all time indices t when xt is 
outside the temporal pattern cluster. 
The average value of g, also called the average eventness, 
of the phase space points within the temporal pattern 
cluster P is 

 
( )

( )1
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g t
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= �   

where ( )c M  is the cardinality of M. The average 
eventness of the phase space points not in P is 
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The corresponding variances are 
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 Using these definitions, an objective function 
based on the t test for the difference between two 
independent means is defined below. 

 ( )

( ) ( )
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where P is a temporal pattern cluster. This objective 
function is useful for identifying temporal pattern clusters 
that are statistically significant and have a high average 
eventness. 
The key concept of the TSDM framework is to find 
optimal temporal pattern clusters that characterize and 
predict events. Thus, an optimization algorithm 
represented by ( )

,
max f P

δp
 is necessary. 

 

4.1 OPTIMIZATION METHOD – GENETIC 
ALGORITHM 

The simple genetic algorithm is adapted to the TSDM 
framework. These adaptations include an initial Monte 
Carlo search and hashing of fitness values. The genetic 
algorithm is described as follows. 

• Create an elite population 
• Randomly generate large population (n times 

normal population size) 
• Calculate fitness 
• Select the top 1/n of the population to continue 
• While all fitnesses have not converged 

o Selection 
o Crossover 
o Mutation 
o Reinsertion 

Initializing the genetic algorithm with the results of a 
Monte Carlo search has been found to help the 
optimization’s rate of convergence and in finding a good 
optimum. 
Typical population sizes range from 30 to 100. Both 
roulette and tournament selection have been used, but 
tournament selection has been found to be more adaptable 
because of its ability to handle negative fitness values. 
One point crossover is used with a uniformly random 
locus. Mutation rates range from 0 to 0.05. An elitism of 
one is typically employed. 
A temporal pattern cluster, which is composed of the 
temporal pattern p of dimension Q and radius δ, is 
encoded into a binary string. Each component of the 
temporal pattern cluster is usually encoded with six to 
eight bits. Thus, each chromosome for a Q dimensional 
temporal pattern cluster is formed from (Q+1)n bits, 
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where n is the number of bit used to encode each 
component. 
The hashing modification reduces the computation time 
of the genetic algorithm by 50%. This modification is 
discussed in detail in (Povinelli and Feng 1999b). 
Profiling the computation time of the genetic algorithm 
reveals that most of the computation time is used 
evaluating the fitness function. Because the diversity of 
the chromosomes diminishes as the population evolves, 
the fitness values of the best individuals are frequently 
recalculated. Efficiently storing fitness values in a hash 
table dramatically improves genetic algorithm 
performance (Povinelli and Feng 1999b). 

 
Figure 3: Block Diagram of TSDM Method 

5 FUNDAMENTAL TIME SERIES DATA 
MINING METHOD 

The first step in applying the TSDM method is to define 
the TSDM goal, which is specific to each application, but 
may be stated generally as follows. Given an observed 
time series { }, 1, ,tX x t N= = � , the goal is to find hidden 
temporal patterns that are characteristic of events in X, 
where events are specified in the context of the TSDM 
goal. Likewise, given a testing time series 

{ }, , ,tY x t R S N R S= = < <�  the goal is to use the 
hidden temporal patterns discovered in X to predict events 
in Y. The method is detailed in Figure 3. 

The key to the TSDM method is that it forgoes the need to 
characterize time series observations at all time indices 
for the advantages of being able to identify the optimal 
local temporal pattern clusters for predicting important 
events. This allows prediction of complex real-world time 
series using small-dimensional phase spaces. 
The results of the application of the method to the 
synthetic seismic time series are illustrated in Figure 4. 
The temporal pattern cluster discovered in the training 
phase is applied to subsequences of the testing time series. 
Using (1), events are detected by determining if 
embedded subsequences of length Q are in P. The pair of 
connected gray squares that match sequences of time 
series observations before events is the temporal pattern. 
The black squares indicate predicted events. 

Figure 4: Synthetic Seismic Time Series with Temporal 
Patterns and Events Highlighted (Testing) 

6 APPLICATIONS AND CONCLUSIONS 
Two problems to which the TSDM method has been 
applied are briefly discussed here. The first is the 
prediction when a droplet of metal will release from a 
welder (Povinelli 1999). Using the time series generated 
from three sensors, a prediction accuracy of over 96% 
was achieved. The three sensors measured the voltage, 
current, and droplet stickout length. The second 
application is to the prediction of stock price increases 
(Povinelli 1999). The TSDM method was applied to the 
30 Dow Jones Industrial components. It was able to 
achieve a return of  30% versus of 3% baseline return.  
TSDM methods have been successfully applied to 
characterizing and predicting complex, nonstationary, 
chaotic time series events from both the engineering and 
financial domains. Given a multi-dimensional time series 
generated by sensors on a welding station, the TSDM 
framework was able to, with a high degree of accuracy, 
characterize and predict metal droplet releases. In the 
financial domain, the TSDM framework was able to 
generate a trading-edge by characterizing and predicting 
stock price events. 
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