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Abstract 

A preliminary study in the use of frequency sub-bands 

with reconstructed phase spaces (RPS) to distinguish 

between normal and abnormal atrial activity in an 

attempt to separate the atrial activation components from 

the ventricular activation components is presented.  

Two-second ECG Holter recordings of sinus rhythm 

(SR), atrial flutter (AFL), atrial fibrillation (AF), 

supraventricular tachycardia (SVT) and ventricular 

tachycardia (VT) were filtered into four sub-bands (0.5-5, 

5-10, 10-20, and 20-32Hz) and embedded into a 3-

dimensional RPS. Gaussian mixture models of the sub-

banded RPS were learned 

The models learned over the 5-10 and 10-20Hz bands 

had the best overall classification accuracy. SR was best 

classified in the 5-10Hz band with no false positives in 

the 10-20Hz band. AFL’s highest classification was in the 

10-20 and 20-32 Hz bands, AF in the 0.5-5Hz band, SVT 

in the 5-10 Hz band, and VT in 10-20 Hz band. When the 

atrial arrhythmias were folded together into one class, 

the highest overall classification accuracy increased from 

79% in the 10-20 Hz band to 92% in the 5-10 Hz band.  

These results are promising for the use of sub-banded 

RPS in the classification of atrial arrhythmias from 

surface ECGs.  

 

1. Introduction 

It is estimated that over 3.9 million Americans 

experience some sort of cardiac arrhythmia. Although not 

all are life threatening, the American Heart Association 

estimated that 5% of US annual deaths are attributed to 

arrhythmias. Atrial fibrillation (AF) and atrial flutter 

(AFL) are the most common arrhythmias, effecting more 

than 2 million people and causing more than 50,000 

deaths annually in the US. Many of these deaths are 

attributed to strokes caused by the development of 

systemic arterial emboli [1]. An important clinical 

application for atrial arrhythmia detection is following 

cardiac surgery, when patients are monitored for episodes 

of AF to minimize the risk factor of stroke [2]. In this 

critical care monitoring, robust and accurate arrhythmia 

identification is important in order to treat the arrhythmia 

promptly and correctly. 

Many of the current techniques for classification are 

morphological based discrimination schemes that require 

accurate detection of the presence and temporal 

placement of atrial and/or ventricular activations. In 

unipolar intracardiac electrograms, such detections are 

fairly simple, as there is little far-field effect from the 

adjacent chamber. Much research has been done to 

discriminate supraventricular tachycardias (SVT) from 

ventricular tachycardias (VT) in implantable devices [3-

5]. However, not many patients have intracardiac leads or 

implantable devices, therefore surface ECGs are used to 

diagnosis arrhythmias.  

Surface ECGs and/or Holter recordings help a 

physician diagnose cardiovascular disorders in a patient. 

Holter recordings are prescribed when a patient is 

experiencing intermittent arrhythmias, and the physician 

would like to capture the events. Two of the problems 

with ECG and Holter recordings are that the atrial 

component of the heartbeat may be small amplitude in 

surface leads, and AF may be missed in a noisy signal [6]. 

This is a preliminary study investigating the 

discrimination of atrial arrhythmias, such as, AF, AFL 

and SVT from sinus rhythm (SR) and VT using Holter 

ECG recordings. A novel approach using frequency sub-

bands and reconstructive phase space (RPS) [7-10] is 

used to detect different rhythms. The goal is to separate 

out the atrial components of an ECG signal to be able to 

automatically differentiate rhythms that are of atrial 

origin from ventricular origin. 

 

2. Data and methods 

Data collected from lead 1 of Holter recordings of 14 

patients experiencing continuous episodes of SR, AF, 

AFL, SVT, and VT were used in this study. The sampling 

rate of the data was 128 Hz. Cardiac Evaluation Center 

(Milwaukee, WI) annotated the Holter recordings. The 

data was split into 256-point (2-second) segments for 

classification. There were 20 examples of each rhythm 

type.  
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Classification of the data was done using two methods 

sub-banded RPS and the gradient probability density 

function [11]. The results from both methods were 

compared. 

 

2.1. Sub-bands 

Research has shown that the majority of energy of 

atrial activation occupies different frequency bands than 

ventricular activation [4, 12]. Thus the separation of the 

data into different frequency bands may allow for better 

discrimination of rhythms that activated in the atria or 

ventricles. 

The data was forward and backward filtered using 100-

point FIR filters to divide the signal into four frequency 

sub-bands, 0.5-5, 5-10, 10-20 and 20-32Hz. These 

frequency sub-bands were selected based on studies by 

Thakor, et al. [12] in which they determined the relative 

power spectra of the ECG, QRS complexes, P and T 

waves. The minimal frequency cut-off, 0.5 Hz, was 

chosen to remove baseline wandering without removing 

diagnostic cardiac information. 

 

2.2. Reconstructed phase space 

A reconstructed phase space is a multidimensional 

embedding of lagged points of a signal. It is topologically 

equivalent to the original dynamical system provided that 

the embedding dimension is greater than twice the 

number of states in the original system [7-9]. A time 

delay RPS of dimension d and time lag v is defined by the 

trajectory matrix: 

In this study, the sub-banded signals are segmented 

into two-second intervals. Each of these filtered segments 

is zero-meaned, radially normalized, and embedded into a 

3-dimensional RPS with a lag of 20 points. The 20-point 

lag was determined from the average auto-mutual 

information of SR signals. The embedding dimension was 

chosen empirically. 

A Gaussian mixture model (GMM) models the 

probability distribution of a statistical variable. In this 

study, GMMs were used to model the RPS density for 

different rhythm classes. The probability distribution of 

the ith rhythm class with M mixtures is defined as 
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where µim is the mean and ぇim is the covariance matrix of 

the mixture m. An example of a GMM is shown in Figure 

1, illustrating a 10-mixture model learned over a two-

dimensional sinus rhythm RPS. The mixtures are 

represented by elliptical contours of equal probability.  

Figure 1 - Gaussian mixture model of a two-dimensional 

reconstructed phase space of normalized sinus rhythm. 
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In this study, twenty mixture GMMs were learned over 

the RPS density for each rhythm class and sub-band using 

a maximization expectation algorithm. Each GMM model 

assigned a maximum likelihood that the exemplar under 

test belonged to a specific rhythm using argmax(pi). A 

leave-one-out cross validation was used learn and test 

GMM models for each exemplar. The classifier for a 

single frequency sub-band is shown in Figure 2. 

 

Figure 2 – Reconstructed phase space a single sub-band 

classifier. 

 

The investigation was extended by combining the sub-

band rhythm classifiers into a naive Bayes maximum 

likelihood classification system. The sub-banded 

classifier probabilities were fused together using a naïve 

Bayes maximum likelihood classifier to produce one 

classification for each segment of data. The fusion Figure 

3 illustrates the combination. 
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Figure 3 – Naïve Bayes fusion of sub-banded 

probabilities. 
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2.3. Gradient PDF 

In the gradient probability density function (PDF) 

method, each data segment is normalized to have an 

absolute magnitude of 1000 units. Using the central 

difference estimator, the slope is determined for each data 

point. The percentage of slopes between ±25 units is 

determined for each segment and the PDF (mean and 

variance) of such slopes for each rhythm type is 

calculated. A maximum likelihood classification for each 

exemplar determines the rhythm classification. 

 

3. Results 

Leave-one-out cross-validation was used in the 

building of the GMM models. Each left out exemplar was 

then classified on the learned models. 

 

3.1. Sub-banded RPS 

The sub-banded RPS had different levels of 

sensitivities for the different rhythms. Across the sub-

bands, the highest sensitivity of the different rhythms 

ranged from 65 to 100%, with SR at 100% and SVT at 

65%, which were both found in the 5-10 Hz sub-band. 

Table 1 lists the highest sensitivity for each individual 

rhythm and in which sub-band this classification was 

found. There were no false positives for SR in the 10-20 

Hz sub-band. The overall rhythm is the classification 

accuracy of all the rhythms combined for each sub-band. 

 

Table 1. Highest sensitivity for each rhythm type and in 

which sub-band it was found. 

 

Rhythm 

Sensitivity of 

Rhythm 

Classification 

Sub-Band 

(Hz) 

SR 100% 5-10 

AF 80% 0.5-5 

AFL 85% 10-20, 20-32 

SVT 65% 5-10 

VT 85% 10-20 

OVERALL 79% 10-20 

 

Ventricular tachycardia was misclassified as AF, AFL 

and SVT in all the sub-bands, however only once in all 

the sub-bands was it misclassified as SR. This occurred in 

the 5-10 Hz sub-band. 

Most misclassifications of the SVT exemplars resulted 

in being classified incorrectly as AF or AFL. When the 

classification for all the atrial arrhythmias were combined 

as one class, the combined atrial class had a classification 

accuracy of 93.3% and the overall classification increased 

to 92%, as shown in Table 2. 

 

Table 2. Highest sensitivity of rhythm classes after atrial 

arrhythmias were folded together. 

 

Rhythm 

Sensitivity of 

Rhythm 

Classification 

Sub-Band 

(Hz) 

SR 100% 5-10 

AF/AFL/SVT 93.3% 5-10 

VT 85% 10-20 

OVERALL 92% 5-10 

 

By combining the sub-bands, the highest sensitivity of 

AF increased to 95%, AFL to 90%, and VT to 90%. For 

SR and SVT, their highest sensitivity decreased to 95% 

and 60%, respectively. The overall classification accuracy 

increased to 86%. Table 3 shows the results of combining 

the sub-bands with a Bayesian maximum likelihood 

classifier for SR, folded atrial arrhythmias, and VT. The 

overall classification accuracy increased to 94%.  

 

Table 3. Sensitivity of combined sub-bands and atrial 

arrhythmias folded together. 

 

Rhythm 

Sensitivity of 

Rhythm 

Classification 

SR 95% 

AF/AFL/SVT 95% 

VT 90% 

OVERALL 94% 

 

3.2. Gradient PDF 

The classification of the arrhythmias using gradient 

PDF had lower sensitivity than the sub-banded RPS 

method. SR had 100% classification accuracy. The 

classification accuracy for AF and SVT was 0%. Half of 

the misclassifications of AF were as SR. Table 4 lists the 

sensitivity for the different rhythms using the gradient 

PDF method. Table 5 lists the sensitivities after the atrial 

arrhythmias are folded into one class. 

 

Table 4. Sensitivity for each rhythm type using the 

gradient PDF method. 

 

Rhythm 

Sensitivity of 

Rhythm 

Classification 

SR 100% 

AF 0% 

AFL 60% 

SVT 0% 

VT 65% 

OVERALL 45% 

 

63



Table 5. Sensitivity after atrial arrhythmias are folded 

together using the gradient PDF method. 

 

Rhythm 

Sensitivity of 

Rhythm 

Classification 

SR 100% 

AF/AFL/SVT 41.7% 

VT 65% 

OVERALL 58% 

 

4. Conclusion 

The results of this preliminary study in the use of sub-

banded RPS to differentiate atrial arrhythmias from sinus 

rhythm and ventricular arrhythmias from ECG recordings 

are promising. The individual sub-bands separated atrial 

arrhythmias from SR and VT.  

Most of the misclassifications of the atrial arrhythmias 

were when one atrial arrhythmia, such as SVT, was 

classified as another atrial arrhythmia, AF or AFL. Future 

studies will need to address a better way to detect the 

individual atrial arrhythmias, possibly with using sub-

banded RPSs as a preprocessor step to separate these 

arrhythmias from SR and ventricular arrhythmias. 

Previous studies have shown that the combination of 

reconstructed phase space with gradient PDF [13] has 

increased the sensitivity of ventricular rhythm 

classification. This may be an additional research path to 

study possibly combining RPS with some of the classical 

methods such as heart rate and heart rate variability. 

When the sub-band RPS probabilities were combined 

in a Bayesian maximum likelihood classifier the overall 

classification accuracy increased. Future studies will 

address weighting the different sub-bands in order not to 

lose accuracy for the individual rhythms, such as SR 

decreasing from 100 to 95%.  
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