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ABSTRACT 

A novel method for classifying speech phonemes is 
presented1. Unlike traditional cepstral based methods, this 
approach uses histograms of reconstructed phase spaces. 
A Naïve Bayes classifier uses the probability mass 
estimates for classification. The approach is verified using 
isolated fricative, vowel, and nasal phonemes from the 
TIMIT corpus. The results show that a reconstructed 
phase space approach is a viable method for classification 
of phonemes, with the potential for use in a continuous 
speech recognition system. 
 

1. INTRODUCTION 
State of the art speech recognition systems typically use 
cepstral coefficient features, obtained via a frame-based 
spectral analysis of the speech signal. Such frequency 
domain approaches do not necessarily preserve the 
nonlinear information present in speech. By using the 
phase space reconstruction technique [1] to capture the 
nonlinear information not preserved by traditional speech 
analysis techniques, improved speech recognition 
accuracy may be achieved. 
 
Various signal-processing techniques have been proposed 
for phoneme recognition. The most successful are Hidden 
Markov Models (HMM) [2, 3], often based on Gaussian 
Mixture Model (GMM) observation probabilities. 
Common features used are Linear Predictive Coding 
(LPC) and cepstral coefficients. Hybrid HMMs and 
neural networks have also been applied to phoneme 
classification [4]. Continuous speech recognition 
accuracy is typically reported using Word Error Rate 
(WER), or sometimes Phoneme Error Rate (PER). 
Isolated phoneme results using pre-segmented data are 
usually reported using overall classification accuracy. On 
the TIMIT corpus, the data set studied in this work, 
phoneme recognition and classification accuracies in the 
range 40-77% have been published [2-5]. 
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The phase space reconstruction approach is a dynamical 
systems method used to capture the nonlinear structure. 
The results discussed here show that a Naïve Bayes 
classifier, using features extracted from phoneme 
reconstructed phase spaces, can be effective in classifying 
phonemes. It is reasonable to expect that this 
classification accuracy will translate long-term to more 
effective continuous speech recognition systems. In 
general, good phoneme classifiers lead to good word 
classifiers, and the ability to recognize phonemes 
accurately provides the basis for an accurate word and 
continuous speech recognizer. 
 
The proposed method is based on our previous work in 
classifying motor faults [6-9] and heart arrhythmias [10, 
11]. In that work [6-11], reconstructed phase spaces were 
formed from sampled signals. For motor fault 
identification, the signals were torque profiles and current 
waveforms. For heart arrhythmia classification, the 
signals were leads II and V1 from a twelve lead 
electrocardiogram (ECG). Statistical characterizations of 
the reconstructed phase spaces were used as features  for 
a neural network classifier in the case of the heart 
arrhythmia classification and a nearest neighbor algorithm 
in the case of the motor fault identification. 
 
The work discussed here in this paper uses estimates of 
the probability masses (histograms) of phoneme 
reconstructed phase spaces as input to a Naïve Bayes 
classifier. The Naïve Bayes classifier is trained on six 
male speakers and tested on three different male speakers. 

2. METHOD 

2.1. Phase Space Reconstruction 

Phase space reconstruction techniques are founded on 
underlying principles of dynamical system theory [13, 14] 
and have been practically applied to a variety of time 
series analysis and nonlinear signals processing 
applications [15, 16]. Given a time series  
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where t is a time index, and N is the number of 
observations, a reconstructed phase space is formed, 
according to Takens’ delay method [13], 
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where τ is the time delay and m is the embedding 
dimension. This reconstructed phase space is in essence 
no more than a multi-dimensional plot of the signal 
against delayed versions of itself. If the phase space 
reconstruction is performed correctly, the result is 
topologically equivalent to the original system [13, 14]. 
Figure 1 provides an illustrative phoneme reconstructed 
phase space with trajectory information. Figure 2 
provides an illustrative phoneme reconstructed phase 
space with density information.  
 

 

Figure 1 – Reconstructed phase space of the vowel 
phoneme /aa/ illustrating trajectory 

 

 

Figure 2 – Reconstructed phase space of the vowel 
phoneme /aa/ illustrating density 

 

Although time delay and embedding dimension are 
important reconstructed phase space parameters, they 
have not been extensively studied in this preliminary 
work on phoneme classification. An embedding 
dimension of two and a time delay of three were used. 

2.2. Normalization 

In order to counteract the amplitude inconsistency 
between phoneme signals, a normalization method is 
used. This method uses radius of gyration, a function of 
the 2nd moment of the distance of the points, as a factor 
for phoneme signal normalization. The radius of gyration 
for two-dimensional reconstructed phase space is 
calculated as follows: 
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Here ( )1x k  denotes the kth point of the signal tx  while 
( )2x k  is the kth point of the signal tx τ− . N is the number 

of samples in the phoneme signal, while the value µi is 
the mean of the signal amplitude for each reconstructed 
phase space dimension. 

2.3. Features of Reconstructed Phase Space 

A statistical characterization (estimates of the probability 
masses) of the reconstructed phase space [10] is formed 
by dividing the reconstructed phase space into 100 
histogram bins as is illustrated in Figure 2. This is done 
by dividing each dimension into ten partitions such that 
each partition contains approximately 10% of all training 
data points. The intercepts of the bins are determined 
using all the training data [10]. 

 
A typical phoneme reconstructed phase space is shown in 
Figure 1 with the corresponding intercepts, which clearly 
shows the structure of the embedded signal. Figure 2 
gives a portrait of the reconstructed phase space based on 
the distribution of points. The estimates of probability 
mass for each phoneme class are calculated.  

2.4. Naïve Bayes Classifier 

The estimates of the probability masses are used as input 
for a Naïve Bayes classifier [17]. This classifier simply 
computes the conditional probabilities of the different 
classes given the values of attributes and then selects the 
class with the highest conditional probability.  
 
If an instance is described with n attributes ai (i=1…n), 
then the class that instance is classified to a class v from 



set of possible classes V according to a Maximum a 
Posteriori (MAP) Naive Bayes classifier is: 
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The conditional probabilities in the above formula is 
obtained from the estimates of the probability mass 
function using training data. The class probability is not 
used in these experiments, since no prior phoneme 
distribution information is available, and thus we are 
implementing Maximum Likelihood (ML) classification. 
This Bayes classifier minimizes the probability of 
classification error under the assumption that the 
sequence of points is independent. 

3. EXPERIMENTS AND RESULTS 
The TIMIT corpus was used to train and evaluate 
speaker-independent phoneme recognizers. The TIMIT 
corpus consists of 630 speakers, each saying 10 
sentences, including: 

• 2 “sa” sentences, which are the same across all 
speakers; 

• 5 “sx” sentences, which were read from a list of 
450 phonetically balanced sentences selected by 
MIT; 

• 3 “si” sentences, which were randomly selected 
by TI. 

The TIMIT corpus has phoneme labeling, which makes it 
a useful database for phoneme classification. 
 
In our experiments, we use training data from six male 
speakers and testing data from three different male 
speakers. Three types of phonemes are tested, which are 
vowels, fricatives, and nasals. A total of seven fricatives, 
seven vowels, and five nasals are selected for the test. A 
two-dimensional reconstructed phase space with a time 
delay of three is formed for each phoneme, and the 100 
estimated probability masses are calculated. 
 
The results in Tables 1-3 are without normalization. The 
result for the seven fricatives classification is shown in 
Table 1. The result for the seven vowels classification is 
shown in Table 2. The result for the five nasals 
classification is shown in Table 3. 
 

Phone Correct 
'dh' 16.67% 
'f' 60.00% 
's' 74.47% 
'sh' 77.78% 
'th' 50.00% 
'v' 56.25% 
'z' 47.62% 

Overrall 58.94% 

Table 1 – Phoneme recognition results of fricatives 

Phone Correct 
'aw' 26.67% 
'ay' 2.63% 
'ey' 21.05% 
'ix' 53.15% 
'iy' 34.19% 
'ow' 5.26% 
'oy' 14.29% 

Overall 33.00% 

Table 2 – Phoneme recognition results of vowels 

 
Phone Correct 

'en' 60.00% 
'm' 4.00% 
'n' 9.43% 

'ng' 16.66% 
'nx' 85.71% 

Overall 16.67% 

Table 3 – Phoneme recognition results of nasals 

The accuracy for vowel recognition and nasals are worse 
than that of fricatives. This is consistent with the results 
from traditional methods [2]. 
 
The result for the seven fricatives classification with 
normalization is shown in Table 4. The result for the 
seven vowels classification with normalization is shown 
in Table 5. The result for the five nasals classification 
with normalization is shown in Table 6. 
 

Phone Correct 
'dh' 38.89% 
'f' 72.00% 
's' 59.57% 
'sh' 94.44% 
'th' 66.67% 
'v' 87.50% 
'z' 23.81% 

Overrall 61.59% 
Table 4 – Phoneme recognition results of fricatives with 

normalization 
 

Phone Correct 
'aw' 13.33% 
'ay' 50.00% 
'ey' 23.68% 
'ix' 27.97% 
'iy' 44.44% 
'ow' 36.84% 
'oy' 21.43% 

Overall 34.49% 
Table 5 – Phoneme recognition results of vowels with 

normalization 
 



Phone Correct 
'en' 0.00% 
'm' 12.00% 
'n' 39.62% 

'ng' 16.67% 
'nx' 57.14% 

Overall 30.21% 
Table 6 – Phoneme recognition results of nasals with 

normalization 
 
The second set of results shows that by normalizing the 
phoneme reconstructed phase spaces, the classification 
accuracy for each class improves. In order to compare 
with traditional methods, different data sets will be used 
in the future. These preliminary results show that the 
proposed method is promising and has the potential to be 
applied to a phoneme recognizer as well as a continuous 
speech recognition system. 

4. CONCLUSIONS 
In this paper, we have presented the Naïve Bayes 
Classifier method for phoneme classification in the 
reconstructed phase space. This method is a novel 
approach substantially different from existing techniques. 
Preliminary results show that our method is a promising 
way for building a phoneme recognizer. Further work will 
focus on using Gaussian Mixture Models (GMMs) built 
from the reconstructed phase space as well as other 
dynamic features, comparison to existing methods, and 
integrating into a continuous recognition system. We 
expect to integrate features of the nonlinear systems with 
traditional statistical features to finally improve the 
overall accuracy of continuous speech recognition. 
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